
TIC FILE COPY
January 1990 UILU-ENG-90-2201

ACT-110

COORDINATED SCIENCE LABORATORY
College of Engineering
Applied Computation Theory

AD-A217 685

COMPUTATIONAL
COMPLEXITY
OF RANDOM
ACCESS MODELS

David Ralph Luginbuhl

DTIC
ELECTES FEB 06 1990 J
; E D

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. 9 0 0 2 0 6 1 8

UNCLASSi"iiED
SECURITY CLASSIFICATION OF THIST AGE

REPORT DOCUMENTATION PAGE oMF o. O70OrOf

I REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIBUTION/AVAILABILITY OF REPORT

, Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2201 (ACT #110)

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (If appilcable) Air Force Institute of Technology
University of llinois- N/A I

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, StaCe. and ZIP Code)

1101 W. Springfield Ave. Wright-Patterson AFB
Urbana, IL 61801 Ohio 45433

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Air Force (If applIcabe)

Institute of Technology -
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Wright-Patterson AFB PROGRAM PROJECT TASK jWORK UNIT

Ohio 45433 ELEMENT NO. NO. NO rCCESSION NO.

11. TITLE (Include Secunty Cassification)

Computational Complexity of Random Access Models

12. PERSONAL AUTHOR(S)
Luginbuhl, David Ralph

I]. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) IIS. PAGE COUNT
Technical FROM _____TO January 1990 I102

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on revern if necenary and idantf by block number)

FIELD GROUP SUB-GROUP Computational complexity, random access model, random
access machine, pointer machine, storage modification
machine, Turing machine, multidimensional Turing machine,

-19. ABSTRACT (Continue on reverse if neceoary and identify by block number)

The relative power of several computational models is consideredlA These models are the Turing
machine and its multidimensional variant, the random access machine (RAM) , the tree machine,
and the pointer machine. The basic computational properties of the pointer machine are examined in
more detail. For example, time and space hierarchy theorems for pointer machines are presented.

Every Turing machine of time complexity t and space complexity s can be simulated by a
pointer machine of time complexity 0(Q) using 0 (s/log s) nodes. This strengthens a similar result by
van Emde Boas (1989). Every alternating pointer machine of time complexity t can be simulated by a
deterministic pointer machine using O(t/logt) nodes. Other results concerning nondeterministic and
alternating pointer machines are presented.

(continued)

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

rM UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT D OTIC USERS Unclassified
,22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

3 UNCLASS IFIED

UNCLASSIFIED

19. Abstract (continued)

> Every tree machine of time complexity t can be simulated on-line by a log-cost RAM of time
complexity O((tlogt)/log log t). This simulation is shown to be optimal using the notion of
incompressibility from Kolmogorov complexity (Solomonoff, 1964; Kolmogorov, 1965).

Every d -dimensional Turin machine of time complexity t can be simulated on-line by a log-cost

RAM running in time OQ(logt)_1 /d)(log log t)ll). There is a lo -cost RAM R running in time t
such that every d-dimensional Turing machine requires time n(t /(log t(log log t)<+/))) to
simulate R on-line. Every unit-cost RAM of time complexity t can be simulated on-line by a d-
dimensional Turing machine in time 0 (t (n)log t (n)).

18. Kolmogorov complexity, simulation

I
I
I

3 COMPUTATIONAL COMPLEXITY OF RANDOM ACCESS MODELS

I
I

I BY
DAVID RALPH LUGINBUHL

B.A., Florida State University, 1979
M.S., Florida State University, 1981

I
I

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science1 in the Graduate College of the (> A

University of Illinois at Urbana-Champaign, 1990

Aooession For

lqTIS CRA&I
DTIC TAB
nannounced 0

Justiflcatio

I Urbana, Illinois By --
Dist rt but ion/_... .
Availability Code$

A vail and/or
Dist Special

U A t..

I 3 Abstract

I
The relative power of several computational models is considered. These models are the Turing

machine and its multidimensional variant, the random access machine (RAM) , the tree ma-

3chine, and the pointer machine. The basic computational properties of the pointer machine are

examined in more detail. For example, time and space hierarchy theorems for pointer machines

are presented.

3 Every Turing machine of time complexity t and space complexity s can be simulated by a

pointer machine of time complexity 0(t) using O(s/log s) nodes. This strengthens a similar

result by van Emde Boas (1989). Every alternating pointer machine of time complexity t can be

3 simulated by a deterministic pointer machine using 0(t/log t) nodes. Other results concerning

nondeterministic and alternating pointer machines are presented.

Every tree machine of time complexity t can be simulated on-line by a log-cost RAM of

3 time complexity 0((,'logt)/oglog t). This simulation is shown to be optimal using the notion

of incompressibility from Kolmogorov complexity (Solomonoff, 1964; Kolmogorov, 1965).

Every d-dimensional Turing machine of time complexity t can be simulated on-line by a log-

3 cost RAM running in time O(t(log t)1 - I / d)(log log t)l/d). There is a log-cost RAM R running in

i time t such that every d-dimensional Turing machine requires time Q(tl+(l/d)/(log t(log log t)1+(l /d)))

to simulate R on-line. Every unit-cost RAM of time complexity t can be simulated on-line by

3a d-dimensional Turing machine in time 0(t(n)2 log t(n)).

I iii

I

I

Acknowledgements

!

Many thanks to the United States Air Force and to the Air Force Institute of Technology

1 (AFIT) for their support in terms of finance and time. Such a deal!! Special thanks to Captain

3Gaylene Ujcik, my program manager at AFIT, for responding immediately whenever I had a

question or request. Thanks also to AFIT Public Affairs for screening all my material so that

the Air Force would not take the blame for any spurious results or embarrassing statements.

3 It's nice to be loved and trusted.

I am grateful to the administrative staffs of the Coordinated Science Laboratory and Beck-

man Institute; they have been extremely pleasant and helpful.

3 I also want to thank my friends for helping me preserve my sanity while I was here, especially

to those involved with Graduate InterVarsity Christian Fellowship. There are many, but some

are very special to me: Diane Cook, Chip Mayse (UB), Leann and Dan Waldron, Shirley

3 Faughn, Christie and Duane Nieuwsma, Deb Lundberg Windes(LB), and Gary Murakami. I

love you all and will miss you very much. Thanks as well to my officemates Marsha and Mike

for hours of scholarly discussions at CSL and Beckman (yeah, right!), and thanks to anyone I

£ played volleyball with.

Thanks to my sister Kristen for long-distance listening. You know that I love you.

Of course, my Mom and Dadhave provided more moral support than anyone, and their

3 unconditional love has kept me going. I thank God continually for my parents.

iv

I

I My advisor, Professor Michael C. Loui has made this entire experience worthwhile and even

3 fun!! I thank him for his motivation, guidance, and red ink, but most of all for his confidence

in me. He is everything I expected in an advisor, and I will strive to do as well for my future

3 students as he did for me.

UV

I
U
I
I
I

I
I
I
I

I
I
Iv
I

Table of Contents

Chapter 1 Introduction
1.1 Background 1
1.2 Summary of Results. 1
1.3 Motivation 3
1.4 Overview. 4

Chapter 2 Definitions and Notation. 5
2.1 Turing Machines 5
2.2 Tree Machines.
2.3 Random Access Machines (RAMs) 8
2.4 Unit-cost Successor RAMs. 10
2.5 Pointer Machines 11
2.6 Nondeterministic and Alternating 'Machines 13
2.7 Miscellaneous Definitions 14

Chapter 3 Literature Review 16
3.1 Turing Machines. 16
3.2 Random Access Machines (RAMs). 17
3.3 Tree Machines. 19
3.4 Pointer Machines 20
3.5 Space Measures.. 20
3.6 Nondeterminism and Alternation 25

Chapter 4 Pointer Machines. 27
4.1 Notation. 27
4.2 Space Compression. 27
4.3 Space Requirements and the Invariance Thesis 31
4.4 Space and Time Hierarchies 38
4.5 Nondeterministic Pointer Machines. 45
4.6 Alternating Pointer Machines. 46

Chapter 5 Optimal Simulation of Tree Machines by Random Access
Machines. 50
5.1 Simulation by Unit-cost RAMs 50
5.2 Simulation by Log-cost RAMs 51

5.2.1 Upper Bound 51
5.2.2 Lower Bound 60

5.3 Implications for Log-cost RAMs and Unit-cost SRAMs 68

Chapter 6 Relationships between Multidimensional Turing Machines
and RAMs 69
6.1 Simulation of Multidimensional Turing Machines by RA'%s 69

6.1.1 Simulation by Log-cost RAs 69

vi

1 6.1.2 Simulation by Unit-cost RAMs and SRAMs 70
6.2 Simulation of RAMs by Multidimensional Turing Machines 72

6.2.1 Simulation of Log-cost RAMs 72
6.2.2 Simulation of Unit-cost RAMs 75
6.2.3 Simulation of Unit-cost SRAMs 77

3 Chapter T Open Problems 80
7.1 Improving Pack and Unpack Routines for Log-cost RAMs 80
7.2 Time versus Space and Determinism versus Alternation 82

7.3 Lower Bound on Simulation of Multidimensional Turing Machines 83

3 References 87

Vita 93

I

I
I
3
I
I

I
I
I
I
Ivii

I

List of Tables

Table 3.1 Simulation time bounds (Turing and tree machines) 21
Table 3.2 Simulation time bounds (RAMs) 22
Table 3.3 Time vs. space on computational models 24

I
I
U
I
U
I
I
I
I

I
I
I

I .iii

I

I

I List of Figures

Figure 2.1 Packing six bits into the accumulator 10

Figure 4.1 Reducing the number of nodes by 1/2 29
Figure 4.2 Representing a Turing machine with pointer machine nodes 33
Figure 4.3 Simulating a pointer machine with IA'I = 2 403 Figure 4.4 Preparation for simulating M 44

Figure 5.1 Worktape W (head moves from W, to W) 55
Figure 5.2 Updating page(p) in main memory 56
Figure 5.3 Processing section s of worktape W 63

3 Figure 7.1 Region of worktape that ri could process 85

i

I
I
I.
I
I
I
I
I
I
I ix

I

I

3 Chapter 1

3 Introduction

i
3

1.1 BackgroundI
Since the introduction of the Turing machine, computer scientists have devised many abstract

3 models of computation to study different aspects of computation. They began by adding

features to the Turing machine so that desciibing a particular Turing machine program was not

so cumbersome. Later, models with random access storage were introduced as a more realistic

3 alternative to the Turing machine. More exotic models have appeared in the literature as well.

g With the introduction of each new computational model there comes the question of its

quantitative relationship to its rivals. It is clear that all the most prominent models (excluding

3 models such as the finite state automaton and the pushdown automaton) accept the recursively

enumerable languages, but they do so with varying degrees of time and space efficiency.

The purpose of this thesis is to specify relationships between models of computation. In

3 particular, we describe the relative computational power between specific models by designing

3 and analyzing simulations of one model by another model. We show in some cases that there

are lower bounds to the speed of simulations of one machine by another.3
1.2 Summary of ResultsI
The models we consider are the Turing machine and its multidimensional variant, the random

I access machine (RAM), the tree machine, and the pointer machine. We examine in more

I1
3

detail the basic computational properties of the pointer machine, a newer model that has been

neglected in the literature but seems to have some interesting properties.

We begin our review of the pointer machine by showing that space compression is possible.

We then describe how space equivalence of pointer machines to other models of computation

depends on the definition of pointer machine space complexity. We show that every Turing

machine of time complexity t and space complexity s can be simulated by a pointer machine of

time complexity O(t) using 0(s/logs) nodes. This strengthens a similar result by van Emde

Boas (1989).

We give time and space hierarchy theorems for pointer machines. With respect to the time

and space hierarchies, pointer machines are similar to Turing machines and RAMs. We show

that every alternating pointer machine of time complexity t can be simulated by a deterministic

pointer machine using 0(t/log t) nodes. We present other results concerning nondeterministic

and alternating pointer machines.

We describe how every tree machine of time complexity t can be simulated on-line by a log-

cost RAM of time complexity 0((tlogt)/loglogt). Using the notion of incompressibility from

Kolmogorov complexity (Li and Vitanyi, 1988), we show that our simulation method is optimal.

This appears to be the first application of Kolmogorov complexity to sequential RAMs. It is

significant because few algorithms have been shown to be optimal.

Using similar techniques, we show that every d-dimensional Turing machine of time complex-

ity t can be simulated on-line by a log-cost RAM running in time O(t(log t)l-(1/d)(log log t)1/d).

For d = 1, the running time is O(t log log t), which is the same as the result of Katajainen et

al. (1988).

2

For simulations of RAMs by multidimensional Turing machines, we show that there is a

log-cost RAM R running in time t such that every d-dimensional Turing machine requires

time fl(tl+(/d)/(logt(loglog t)I+(1/d))) to simulate R on-line. We describe how every unit-cost

RAM of time complexity t can be simulated on-line by a d-dimensional Turing machine in time

O(t(n) 2 logt(n)). We also give a lower bound for on-line simulations of unit-cost RAMs by

multidimensional Turing machines.

1.3 Motivation

Our research is significant for a number of reasons. A general simulation provides automatic

transformation of algorithms for one model into algorithms for another model. This is especially

important when one of the models is a Turing machine or RAM, since these machines are clearly

the standard models of computation: the Turing machine for its historical significance, the RAM

because it most closely resembles a real computer.

Another reason to examine relationships between these models of computation is to de-

termine how architectural enhancements (for example, multidimensional tapes on a Turing

machine) affect the speed of a model.

A related issue is how alterations in the definition of time and space measures for a model

affect the model's complexity. We are particularly interested in the tradeoff between log-cost

RAMs with the standard instruction set and unit-cost RAMs with a weaker instruction set

(allowing only the successor function). We have tried to determine their relationship directly,

but we have also examined their relationship by looking at how they each relate to other models.

An additional motivation for research into simulations between these models concerns the

idea of data structure representation. The simulations provide insight into efficient embeddings

3

between data structures. For instance, an optimal simulation of a multidimensional Turing

machine by a RAM may indicate how best to represent an array in a set of registers.

It is clear that researchers will continue to use the models investigated in this thesis. We

feel that our results add significantly to the knowledge base of computational modeling.

1.4 Overview

In Chapter 2, we introduce the machines we investigate, providing detailed descriptions of each

model, as well as definitions of their time and space complexities. In Chapter 3, we survey

research pertinent to our study and review previous results involving these models.

We investigate the pointer machine in Chapter 4. We present some basic computational

properties of the pointer machine. Chapter 4 also contains our results on space equivalence of

pointer machines, Turing machines, and RAMs, as well as some theorems about nondetermin-

istic and alternating pointer machines.

Chapter 5 features our on-line simulation of a tree machine by a log-cost RAM. We de-

scribe the simulation and show that it is optimal. In Chapter 6, we exhibit on-line simulations

between multidimensional Turing machines and RAMs, in both directions, and present some

lower bounds.

In Chapter 7, we present open problems suggested by the results of Chapters 4, 5, and 6,

and we describe the significance of their solutions.

A preliminary version of Chapter 4 appears in a Coordinated Science Laboratory technical

report (Luginbuhl and Loui, 1988). Preliminary versions of Chapter 5 and Section 6.1 also

appear in a technical report (Loui and Luginbuhl, 1989).

4

I

U Chapter 2

3 Definitions and Notation

I
3

In this chapter, we introduce the models of computation we consider. We also describe terms

I and notation we use throughout the thesis. All logarithms in this thesis are taken to base 2.

3 For simplicity, we omit floors and ceilings.

3 2.1 Turing Machines

3 We assume the reader is familiar with the Turing model, its basic variations, and the time and

space measures of the Turing machine as described by Hopcroft and Ullman (1979). Because

I many of our results concern multidimensional Turing machines, we describe them here in more

3 detail.

A multihead d-dimensional Turing machine consists of a finite control and a finite number

I of d-dimensional worktapes, each with at least one worktape head. A d-dimensional worktape

3 comprises an infinite number of cells, each of which is assigned a d-tuple of integers called

the coordinates of the cell; for instance, the coordinates of cell x are (xl,x2,... ,Xd). The

U coordinates of adjacent cells differ in just one component of the d-tuple by ±1. Call the cell

3 with coordinates (0, 0,...., 0) the origin.

At each step of the computation, the machine reads the symbols in the currently accessed

input and worktape cells, (possibly) writes symbols on the currently accessed output and work-

I

I

tape cells, (possibly) shifts the input head, and shifts each worktape head in one of 2d + 1

directions - either to one of 2d adjacent cells or to the same cell.

A box is a set of cells that form a d-dimensional cube. The volume of a box is the number of

cells it contains. The base cell of a box is the cell within the box with the smallest coordinates.

The distance between two cells is the sum of the absolute values of the differences between their

corresponding coordinate components; this is sometimes called the L'-distance or rectilinear

distance.

Lemma 2.1 Let Al be a d-dimensional Turing machine with d > 2. Let a worktape of M have

a box B of volume v with the origin as B's base cell, and let x be a cell within box B. If the

coordinates of x are written on a separate worktape, then M can access cell z in time O(v /d).

Proof. M moves a worktape head to the origin (the boundaries of B are specially marked

so that the origin ca.. be found). M then moves this worktape head in the first direction the

distance specified by the corresponding component x, of x's coordinates, decrementing that

component as the head moves in B. M does the same for each component, until the head

arrives at cell x. Decrementing a counter specifying value v' takes time 0(v '). Since each of

x's d components specifies a value of at most vl/d, decrementing each component takes time at

most dO(v /d) = O(vl/d) (since d is a constant). The distance from x to the origin is at most

dvl/d, so M moves the head across O(v /d) cells. Thus the total time to move the head to x is

0 (v1 /d). 0

2.2 Tree Machines

A tree machine, a generalization of a Turing machine, has a storage structure that consists of

a finite collection of complete infinite rooted binary trees, called tree worktapes. Each cell of a

6

worktape can store a 0 or 1. Each worktape has one head. A worktape head can shift to a cell's

parent or to its left or right child. Initially, every worktape head is on the root of its worktape,

and all cells contain 0.

Let W be a tree worktape. We fix a natural bijection between the positive integers and cells

of W. We refer to the integer corresponding to a particular cell as that cell's location. Write

cell(b) for the cell at location b. Define cell(l) as the root of IV. Then cell(2b) is the left child

of cell(b) and cell(2b + 1) is the right child of cell(b).

Each step of a tree machine consists of reading the contents of the worktape cells and input

cell currently scanned, writing back on the same worktape cells and (possibly) to the currently

accessed output cell, and (possibly) shifting each worktape head and the input head. When the

tree machine writes on the output tape, it also shifts the output head.

The time complexity t(n) of a tree machine is defined in the natural way. The space com-

plexity s(n) of a tree machine is the total number of distinct cells visited by worktape heads.

Clearly, every tree machine of space complexity s(n) can be simulated by a Turing machine of

space complexity s(n), and vice-versa.

The depth complexity of a tree machine is d(n) if every worktape head remains within

distance d of the root of its worktape on every input of size n. It is possible to limit the depth

complexity of a tree machine with respect to its time complexity:

Theorem 2.2 (Paul and Reischuk, 1981; Loui, 1984a) Every tree machine running in time

t(n) can be simulated on-line by a tree machine running in time O(t(n)) and depth O(logt(n)).

I 7

2.3 Random Access Machines (RAMs)

The random access machine (RAM) (Aho et al., 1974; Cook and Reckhow, 1973; Katajainen et

al., 1988) consists of the following: a finite sequence of labeled instructions; a memory consisting

of an infinite sequence of registers, indexed by nonnegative integer addresses (register r(j) has

address j); and a special register AC, called the accumulator, used for operating on data. Each

register, including AC, holds a nonnegative integer; initially all registers contain 0. Let (x)

denote the contents of iegister r(x) and (AC) denote the contents of AC. Each cell on the

input and output tapes contains a symbol from a finite input/ouput alphabet. The following

RAM instructions are allowed:

input. Read the current input symbol into AC and move the input head one cell to the

right.

output. Write the binary representation of (AC) onto the output tape.

jump 0. Unconditional transfer of control to instruction labeled 0.

jgtz 0. Transfer control to instruction labeled 0 if (AC) > 0.

load =C. Load integer C into AC.

load j. Load (j) into AC.

load *j. (Load indirect) Load ((j)) into AC.

store j. Store (AC) into r(j).

store *j. (Store indirect) Store (AC) into register r((j)).

8

add j. Add (j) to (AC) and place result in AC.

sub j. If (j) > (AC), then load 0 into AC; otherwise, subtract (j) from (AC) and place

result in AC.

3 The length of a nonnegative integer i is the minimum positive integer w such that i < 2"'- 1

3(approximately the logarithm of i).

We consider two time complexity measures for RAMs, based on the cost of each RAM

U instruction. For the unit-cost RAM, we charge each instruction one unit of time. For the

3 log-cost RAM, we charge each instruction according to the logarithmic cost criterion (Cook

and Reckhow, 1973): the time for each instruction is the sum of the lengths of the integers

3(addresses and register contents) involved in its execution. The time complexity t(n) of a RAM

is the maximum total time used in computations on inputs of length n. It is possible, of course,

to define time complexity in other ways; e.g., we could charge some other function f(j) for

U access to register j (Aggarwal et al., 1987).

3 In our simulations involving RAMs, we group the registers into a finite number of memories,

each memory containing an infinite number of registers. This does not increase the cost in time

I by more than a constant factor, since we could simply interleave these memories into one

3 memory (Katajainen et al., 1988).

We discuss the space complexity of RAMs in Section 3.5.

I Two RAM operations used often in this thesis are the pack and unpack operations. Let

3 r, r 2,.. ., rb be contiguous registers in RAM R's memory containing, respectively, x 1 , x 2 ,... ixb,

where each xi is a single bit. R packs r1 , r 2 ,..., rb by computing the single b-bit value 2b-lx1 +

3 2 b-2x 2+...+xb and placing this value into the accumulator (see Figure 2.1 for an example). The

*9

memory
a 1

a + 2 1 accumulator

a-+3 0

a-+4 1
a-+5 1

Figure 2.1: Packing six bits into the accumulator

unpack operation is the inverse of the pack operation; R takes a single value in the accumulator

and stores its bits into contiguous registers. Each operation has as parameters the beginning

and ending addresses of the registers involved in the operation.

We use a technique of Katajainen et al. (1988) to pack and unpack registers. This divide-

and-conquer strategy involves precomputed shift tables:

Lemma 2.3 (Katajainen et al., 1988) If the proper tables are available, then it is possible to

pack u bits into the accumulator, and to unpack a u-bit string into memory, both in O(ulogu)

time on a log-cost RAM.

Lemma 2.4 (Katajainen et al., 1988) The tables necessary for Lemma 2.3 can be built in

O(u2u) time on a log-cost RAM.

2.4 Unit-cost Successor RAMs

A variation of the RAM that we consider is the successor RAM (SRAM) (see Schbnhage,

1980). The SRAM is defined almost exactly like the RAM, except that instead of add and

10

3 subtract instructions, the SRAM has the successor instruction, which adds 1 to the value in the

accumulator, and the empty instruction, which loads 0 into the accumulator. We are particularly

interested in the SRAM with the unit-cost time measure, because of the relationship between

the unit-cost SRAM and the pointer machine (see Section 3.4).

*I 2.5 Pointer Machines

I The following definition for pointer machines is drawn from the pointer machine definitions of

3 Schdnhage (1980) and Halpern et al. (1986).

A A-structure, which provides the storage for the pointer machine, is a directed graph

I consisting of nodes (vertices) and pointers (edges). Each node has a finite number of outgoing

pointers, and each pointer from a node has a distinct label. The labels are symbols from the

finite pointer alphabet A. At any time, one node, designated the center, is used to access the

I A-structure. We refer to the center node as £0.

3 We describe an instantaneous configuration of the A-structure by a set of pointer mappings:

for all 6 E A, there is a pointer mapping p6 : X -* X, where X is the set of nodes; p6(x) = y

I means the 6 pointer from node x points to node y. From these pointer mappings, we can

3 recursively define the mapping p" : A' - X:

p*(A) = X0, (where A is the empty word)

p*(Wb) = p6(p*(W)), for all b E A,W E A*.

I The pointer machine also has a separate read-only input tape containing symbols from an

input alphabet E. For simplicity, we consider only pointer machines that accept or reject their

input. With the addition of a write-only output tape, we could also consider pointer machines

I that produce output.

I

A pointer machine has a finite sequence of program instructions, each with some distinct

instruction label. We define the following pointer machine instructions:

accept. Self-explanatory. Computation halts.

reject. Self-explanatory. Computation halts.

create W, where W E A*. Create a new node x' in the A-structure. If W = US, where

6 E A and U G A*, then set the 6 pointer of node p*(U) to point to z'. For all Y E A, p.(x')

is set to x0.

center W, where W E A*. Make the node p-(W) the new center.

assign W := V, where WV E A*. If W = Ub, then set the 6 pointer of p*(U) to point to

p*(V).

if W = V go to p, where W,V E A* and is an instruction label. If p*(W) = p*(V), then

pass control to the instruction labeled M. Otherwise, execute the next instruction.

if input = a go to p, where A is an instruction label. If the input symbol is a, then pass

control to the instruction labeled M. Otherwise, execute the next instruction.

move p, where p E {left, right}. Move the input tape head one square in the direction

indicated by p.

The pointer machine starts with the input head on the leftmost nonblank input symbol and

one node in the A-structure. We call this node, which is the center when computation begins,

the initial node.

12

I

I The time consumed by the pointer machine is the number of instructions executed before

halting. We consider both unit-cost and logarithmic-cost space measures. Define mass to be

the number of create instructions executed before halting, i.e., the number of nodes created

I during execution. Mass was introduced as a measure of space by Halpern et al. (1986). Define

3 the capacity of a computation to be dnlog n, where n is the number of nodes created, and d is

the number of pointers per node (d = JAl).

I The idea for considering capacity as a space measure comes from Borodin et al. (1981). With

3 n nodes there are at most ndn possible configurations of the A-structure. Borodin et al. (1981)

defined control space (capacity) as log(Q), where Q is the number of possible configurations,

I so our definition of pointer machine capacity is reasonable. Since the standard definition of

3 Turing machine space does not account for the size of the tape alphabet, we could also define

a logarithmic space measure for pointer machines without considering the size of the pointer

I alphabet. For this thesis, however, we use the capacity measure as defined.

I Proposition 2.5 Every pointer machine of mass complexity s(n) has capacity complexity

5 O(s(n)logs(n)) and every pointer machine of capacity complexity s(n) has mass complexity

O(s(n)/log s(n)).I
2.6 Nondeterministic and Alternating MachinesI
Although most of our results involve sequential models of computation, there are a few theo-

I rems about nondeterministic and alternating machines. We assume the reader is familiar with

3 nondeterministic Turing machines as described by Hopcroft and Ullman (1979).

The concept of alternation (Chandra et al., 1981) builds on the idea of nondeterminism.

I In an alternating Turing machine, as in a nondeterministic Turing machine, each configuration

I 13

I

can reach several successor configurations in one step. Each state is universal or existential. A

configuration of the alternating machine is universal if the state is universal, and it is existential

if the state is existential. An existential configuration is accepting if at leazt one of its successor

configurations is accepting. A universal configuration is accepting only if all of its successor

configurations are accepting. A configuration with no successor configuration is accepting if the

state is accepting, and vice-versa. Thus a nondeterministic Turing machine is an alternating

Turing machine with all existential configurations.

Nondeterministic and alternating pointer machines are defined analogously.

2.7 Miscellaneous Definitions

Let resource be time or space and resource2 be time or space. We say that machine M of

resource1 complexity r is simulated by machine M' in resource2 f(r) if for every input string,

M' produces the same output as M in resource2 f(r). We call M' the host and M the guest in

the simulation.

We say M is simulated by a machine M' on-line in time f(t) if for every time step ti

where M reads/writes an input/output symbol, there is a corresponding time step t where

M' reads/writes the same symbol, and t < f(ti). If M' simulates M in time f(t), but the

simulation is not on-line, then we say that M' simulates A1 off-line. Clearly, if Al' simulates M

on-line in time f(t), then we can modify M' to simulate M off-line in time f(t). The converse

may not be true. The distinction between on-line and off-line simulations is meaningless if the

simulated machine reads all of its input before writing any output (e.g., a machine that only

accepts or rejects its input).

14

I

I We say M is simulated by M' in real time if there is a constant c such that the following holds:

if M reads/writes an input/output symbol at time steps to < tj < ... < tt, then A' reads/writes

the same symbol at time steps t' < t' < - < t', and for 1 < i < f, t' - t _. < c(t, - t.- 1). If

I machine M simulates M' in real-time and M' simulates Al in real-time, then M and A' are

real-time equivalent.

I

I
I
I
I
I
I
I
I
I

I 15

I

Chapter 3

Literature Review

This chapter surveys research into the relative power of computational models. We begin with

a review of results on Turing machines and RAMs.

3.1 Turing Machines

Early results in computational complexity involved the deterministic Turing machine. :opcroft

and Ullman (1979) presented many of these results, such as linear speedup, space compression,

and time and space hierarchies.

Hennie and Stearns (1966) showed that TnTing rr.chiues running in time t accept more

languages than Turing machbic running in time o(t/log t). This was an improvement of an

earlier time hierarchy presented by Hartmaiti; awl Jtearns (1965b). Cook and Reckhow (1973)

presented a tighter hierarchy for log-cost RAMs; specifically, RAMs running in time t accept

more languages than RAMs running in time o(t). Paul (1979) substantially tightened the time

hierarchy for k-tape Turing machines, for fixed k > 2; he showed that the class of languages

accepted by k-tape machines in time t is strictly contained in the class of languages accepted

by k-tape machines in time o(tlog't). Later, Fiirer (1984) showed that the time hierarchy is as

tight for multitape Turing machines (with a fixed number of tapes) as it is for RAMs.

The definition of the Turing machine model has been modified in many ways to investigate

how different enhancements of the model affect its computational power. One such variation

16

already mentioned is the multitape Turing machine. Hennie and Stearns (1966) showed that a

k-tape machine can be simulated by a 2-tape machine within a logarithmic time factor. Paul

et al. (1981) proved that a k-tape machine cannot be simulated in real time by a Turing

machine with fewer than k tapes. Their proof relied on information-theoretic techniques from

Kolmogorov complexity, which has since been used to prove lower bound results for other on-

line simulations (e.g., Loui, 1983), including some results in this thesis. We discuss Kolmogorov

complexity in more detail in Subsection 5.2.2.

Another variant of the Turing machine is the multidimensional Turing machine. Hennie

(1966) and Grigor'ev (1977) showed that for all e > d, a d-dimensional Turing machine requires

time fj(tl+(1/d) - (1/,)) time to simulate on-line an e-dimensional Turing machine running in

time t. Pippenger (1982) showed that this lower bound holds even if the simulating machine

is probabilistic (a probabilistic machine's computation path is determined by a series of "coin

flips"). Pippenger ind Fischer (1979) achieved this lower bound for d = 1: they showed that

every e-dimensional Turing machine running in time t can be simulated by a one-dimensional

Turing machine in time 0(t 2 -(I/e)). Loui (1982) presented a near-optimal upper bound for d > 2

by showing that every e-dimensional Turing machine of time complexity t can be simulated

on-line by a deterministic d-dimensional Turing machine in time O(tl+(l/d)-(l/e)(logt)O(1)).

Pippenger (1982) presented simulations of e-dimensional Turing machines of time complexity t

by probabilistic d-dimensional Turing machines in time O(tl+(1/d)-(I1/e)(log t)I/d).

3.2 Random Access Machines (RAMs)

Research into the complexity of RAMs has included investigation of how different definitions

of the time measure and different instruction sets affect the time complexity of the RAM.

17

Hartmanis (1971) described the Random Access Stored-Program Machine (RASP), a RAM

whose program is stored in memory. Storing the program in memory allows for alterations in

the program during execution. Cook and Reckhow (1973) compared the time complexity of the

RAM with the time complexity of the RASP. They showed that the RAM and the RASP are

real-time equivalent.

It is clear that every log-cost RAM can be simulated by a unit-cost RAM in real time.

Paul and Reischuk (1981) showed that every log-cost RAM running in time t can be simulated

off-line by a unit-cost RAM running in time O(t/log log t).

Fischer (1975) showed that unit-cost SRAMs can simulate log-cost RAMs with addition and

subtraction in real time. Dymond (1977) proved that every unit-cost SRAM running in time t

can be simulated on-line by a log-cost RAM in time O(t log t). A faster on-line simulation is not

known, but Sch6nhage (1988) exhibited a separation between the log-cost RAM and unit-cost

SRAM by showing that a log-cost RAM requires 11(n log*n) time just to read and store (on-line)

an arbitrary input of n bits.

With two such different models of computation (the Turing machine and the RAM), it is

natural to examine how they differ in their use of time and space. Cook and Reckhow (1973)

investigated relationships between Turing machines and log-cost RAMs. They showed that

every Turing machine running in time t can be simulated by a log-cost RAM running in time

O(t log t). They also showed that every log-cost RAM running in time t can be simulated in time

0(2) by a Turing machine. For unit-cost RAMs running in time t, they gave a simulation by a

Turing machine in time Q(t3). Katajainen et al. (1988) improved the first result: they showed

that every Turing machine of time complexity t and space complexity s can be simulated by a

log-cost RAM running in time O(tloglogs) (hence in time 0(tloglogt)). Wiedermann (1983)

18

I improved the simulation of a log-cost RAM by a Turing machine to run in time O(t2 / log t). Loui

(1983) proved that every log-cost RAM running in time t can be simulated by a d-dimensional

Turing machine running in time O(tl+(l/d)/log t).

I Hopcroft et al. (1975) presented an off-line simulation of Turing machines running in time

t by unit-cost RAMs running in time O(t/logt). The RAM precomputes a table of configu-

rations of the Turing machine and simulates the Turing machine using simple table look-ups.

I This technique is also used in the famous four Russians algorithm for matrix multiplication

(Arlazarov et al., 1970). Galil (1976) extended the result of Hopcroft et al. (1975) by showing

how the simulation could be converted into an on-line simulation.I
3.3 Tree Machines

We have seen how additional tapes or more dimensions enhance the complexity of the Turing

I machine. Researchers have also investigated the effect of more radical variations of the storage

structure on the computational complexity of the Turing machine. One variation is the tree

machine, whose storage tape is a complete infinite rooted binary tree.

U Clearly, every one-dimensional Turing machine can be simulated by a tree machine in real

time. Reischuk (1982) showed that every e-dimensional Turing machine of time complexity t

can be simulated on-line by a tree machine in time Q(t 5 e1og*t). It is not known whether this

U simulation is optimal. Pippenger (1982) showed that every multidimensional Turing machine

can be simulated on-line by a probabilistic tree machine in linear time.

Pippenger and Fischer (1979) showed that every tree machine of time complexity t can be

simulated on-line by a one-dimeitsional Turing machine in time O(t2/log t). Extending this

result, Loui (1983) showed that every tree machine running in time t can be simulated by a

19

d-dimensional Turing machine in time O(tl+(1/d)/log t). le also used Kolmogorov complexity

to show that this simulation is optimal.

Some relationships between tree machines and RAMs have also been established. Paul and

Reischuk (1981) showed that every log-cost RAM can be simulated by a tree machine in real-

time. They also showed that every tree machine running in time t can be simulated off-line by

a unit-cost RAM in time O(t/loglogt).

3.4 Pointer Machines

Sch6nhage (1980) introduced the Storage Modification Machine, also known as the pointer

machine. He showed that the pointer machine is real-time equivalent to the unit-cost SRAM;

therefore, results already mentioned concerning the time complexity of unit-cost SRAMs apply

as well to pointer machines, and vice-versa. Besides establishing the relationship between

pointer machines and SRAMs, Sch6nhage also showed that pointer machines can simulate

multidimensional Turing machines in real time.

Tables 3.1 and 3.2 contain a summary of the relationships between the various models.

These tables also include results from this thesis (with accompanying theorem numbers). In

these tables, X 4 Y means that machine X can be simulated by machine Y in time O(f).

3.5 Space Measures

We have already mentioned the existence of a space hierarchy for Turing machines. There are,

of course, other results concerning the use of space on the various computational models. For

instance, Slot and van Emde Boas (1988) studied the relationship of Turing machine space to

20

I ~ ~~Host _______

GetTuring machine d-Turing machine tree machine

ITuring real-time real-time
machine

I(straightforward) (straightforward)
o(t+(/d)VAIIC)(log t) 0 (1))

e- Turing E)(t 2-(1/e)) (Loui, 82) 0(5elg'
machine tl11)(e)II (Pippenger &(Hlennie, 66) and

Fischer, 79) (Grigor'ev, 77) (Reischuk, 82)

tree e (t2 /log t) e(tl+(Ild)/ log t)I machine
(Pippenger&
Fischer, 79) (Loui, 83)I O(t, / log t) O(tl+(Ild)/ log t)

lo-cst (Wiedermann, 83) (Loui, 83)reltm
logMcos t2) tl+(ld)raltmIRM~(log t(log log t)2) (log t(log log t)l+(l/d))')

3(Theorem 6.4) (Theorem 6.4) (Paul & Reischuk, 81)

O(t2 log t)

Iunit-cost 0 (t3) (Theorem 6.5) 0(t 2)
RAM Q(tl+(Ild)/ log t) (log RAM - tree mach;

_______ (Cook & Reckhow, 73) (Theorem 6.6) unit RAM -log RAM)

0 (t l+(li/d) (log t)1 Id)

unit-cost 0(t2 log t) (Theorem 6.7) 0(t log t)

(pointer)(l(//og (log RAM t tree mach;

mc Ire (Wagner & Wechsung, 86) (Theorem 6.8) unit SRAM '_ log RAMI)

ITable 3.1: Simulation time bounds (Turing and tree machines)

I 21

Host

log-cost RAM unit-cost RAM unit-cost SRAM
Guest ____________(pointer machine)

Turing 0 (t log log t) of-ie tlgt) real-time
machine (Hopcroft et al., 75)

on-line:
(Katajainen et al., 88) (Galil, 76) (straightforward)

e-aThine (log t)1i/c off-line:reltm
machine(Grigor'ev, 79)

on-line:
________ (Theorem 6.1) (Theorem 6.2) (Sch6nhage, 80)

off-line:

0 (t/log log t)
tree E)((t log t)/I log log t) (Paul & Reischuk, 81) real-time

machine on-line:
real- time

(Theorem 5.2) (Theorem 5.1) (straightforward)

off-line:

0 (t/log log t)
log-cost (Paul & Reischuk, 81) 0 (t)
RAM on-line:reltm

____________________ (straightforward) (Fischer, 75)

unit-cost 0(t 2) 0 (t 2)
RAM (log RAM __'+ unit SRAM;

________ (straightforward) unit RAM -*log RAM)

Q (t log t)

unit-cost (straightforward) real-time

(pointer

machine) (Theorem 59) (straightforward)

Table 3.2: Simulation time bounds (RAMs)

22

RAM space. One of their goals was to establish whether a Turing machine using space 9 could

simulate a RAM using space 0(s), and vice-versa.

Slot and van Emde Boas considered two logarithmic measures for RAM space: size,, which

I charges only the length of the contents of each register used, and sizeb, which accounts for both

the contents and the address of each register. They showed that both measures allow for space

equivalence of RAMs and Turing machines; however, the proof of space equivalence with size3

I relied on a simulation of a RAM by a Turing machine in exponential time. On the other hand,

simulations based on sizeb used linear space and polynomial time in both directions. Thus the

second space measure, which seems more intuitive, also seems to allow for a closer relationship

I between the two models.

One important issue in computational complexity is the relationship of time and space

complexity of a particular model. Hopcroft et al. (1977) showed that "space is strictly more

I powerful as a resource for deterministic multitape Turing machines": they proved that every

deterministic multitape Turing machine running in time t can be simulated by a Turing machine

using space t/logt. Consequently, by the space hierarchy for Turing machines, the class of

I languages accepted by a Turing machine in time t is strictly contained in the class of languages

3 accepted in space t. Adleman and Loui (1981) presented an alternative proof of the result of

Hopcroft et al.

Paul and Reischuk (1981) showed that every d-dimensional Turing machine running in time

t can be simulated by another d-dimensional Turing machine in space t5dlogI/logt. Pippenger

(1982) improved the time-space result for multidimensional Turing machines, showing that

there is a simulation that runs in space t/log t.

2
23

Model Time-Space Relationship

Turing machine t - t/log t (Hopcroft et al., 75)
d-Turing machine t -- t/log t (Pippenger, 82)
log-cost RAM t - t/logt (Paul and Reischuk, 81)
pointer machine (mass) t -- t/log t (Halpern et al., 86)
pointer machine (capacity) t -t t (Proposition 2.5)
tree machine t - t/log t (Paul and Reischuk, 81)

Table 3.3: Time vs. space on computational models

Paul and Reischuk (1981) also showed that every log-cost RAM running in time t can be

simulated by a Turing machine in space O(t/log t). By space equivalence of RAMs and Turing

machines (Slot and van Emde Boas, 1988), we have the same time-space result for RANIs as

for Turing machines. Another result of Paul and Reischuk is that every tree machine of time

complexity t can be simulated by a Turing machine in space O(t/log t). By space equivalence of

tree machines and Turing machines, we again duplicate the Turing machine time-space result,

this time for tree machines.

Halpern et al. (1986) investigated the relationship of time and space complexity in pointer

machines. They showed that every pointer machine running in time t can be simulated in

mass O(t/logt). Table 3.3 summarizes these time vs. space results (f --- g means that a

machine running in time f can be simulated by a machine running in space 0(g)).

Van Emde Boas (1989) showed that Turing machines running in space s accept exactly

the same languages as a pointer machines using O(s/logs) nodes; however, his simulation of a

Turing machine by a pointer machine uses quadratic time. This thesis contains an improvement

to this result - our simulation runs in linear time with the same space complexity as the

simulation of van Emde Boas.

24

3.6 Nondeterminism and Alternation

Paul et al. (1983) proved that nondeterministic two-tape Turing machines running in linear

time accept more languages than k-tape deterministic Turing machines running in linear time

for any constant k. The best known simulation of a nondeterministic Turing machine of time

complexity t by a deterministic Turing machine takes time 0(1)t (Hopcroft and Ullman, 1979;

i Yap, 1987). Unfortunately, none of this work has yet led to an answer to the notorious P

NP question.

3 Savitch (1970) used a recursive search of machine configurations to prove that every nonde-

terministic Turing machine with space complexity s can be simulated by a deterministic Turing

machine using space s2 . By Savitch's result we know that the class of languages accepted in

polynomial space on a deterministic Turing machine is equivalent to the class of languages

accepted in polynomial space on a nondeterministic Turing machine (PSPACE = NPSPACE).

Chandra et al. (1981) established the fundamental properties of alternating Turing ma-

3 chines. They showed, for instance, that every nondeterministic Turing machine of space com-

plexity s can be simulated by an alternating Turing machine running in time O(s2). Conversely,

every alternating Turing machine of time complexity t can be simulated by a deterministic Tur-

I ing machine using space t. An important corollary to these two results is that the class of

3 languages accepted in deterministic polynomial space (PSPACE) is equivalent to the class of

languages accepted in alternating polynomial time (APTIME).

I For alternating Turing machines, Paul et al. (1980a) showed that decreasing the number

3 of tapes does not increase the time complexity; i.e., every alternating Turing machine run-

ning in time t can be simulated by a one-tape alternating Turing machine with no time loss.

I Furthermore, they showed that every nondeterministic Turing machine of time complexity t

I25

can be simulated by an alternating Turing machine running in time 1/ 2 . Paul and Reischuk

(1980b) proved that every deterministic Turing machine of time complexity t can be simulated

by an alternating Turing machine running in time (t log log t)/log t. Dymond and Tompa (1985)

improved this last result with a simulating alternating Turing machine running in time t/log t.

26

Chapter 4

Pointer Machines

In this chapter, we present several results concerning both time and space complexity of pointer

machines. These results indicate that, in many ways, pointer machines are similar to Turing

machines and RAMs.

4.1 Notation

We present a standard notation used in this chapter to describe the complexity classes defined

by pointer machines and Turing machines.

Let A4 be TM for Turing machines and PM for pointer machines. M-TIME(f) is the class

of languages accepted by the machine type specified by M in time f, where f is a function of

the input length. TM-SPACE(f) is the class of all languages accepted by Turing machines in

space f. PM-CAPACITY(f) and PM-MASS(f) arc the space complexity clas:-es for pointer

machines. To specify complexity classes for nondeterministic versions of these machines, we

prefix the machine type with N; for alternating machines, A.

4.2 Space Compression

Our first result is a space compression theorem for pointer machines.

Theorem 4.1 For every constant c > 0, every pointer machine with mass complexity s(n) can

be simulated by some pointer machine with mass complexity cs(n).

27

Proof. We show the case where c = 1/2. Consider pointer machine A having mass complex-

ity s(n). We design a pointer machine B that simulates A and has mass complexity s(n)/2.

For B tu compute with half the number of nodes of A, we encode two nodes of A into one

node of B with the addition of several pointers. For every 6 in the pointer alphabet of A, the

pointer alphabet of B has b(1,1), 6(1,2), b(2, 1), 6(2,2). Each node in B corresponds to a

pair of nodes in A. The ordered pairs in the pointer notation indicate the original source and

destination nodes.

We also create one node (called G) to hold "useless" pointers. And we need a pointer 7

that points to G from any node, so G is always accessible. The 7 pointer from G always points

to the last node created.

We establish the correspondence between nodes of A and nodes of B as follows. Call a node

in B a node-pair to distinguish it from the pair of nodes in A to which it corresponds. Designate

the older node in a pair of nodes in A as node I and the other as node 2. If the 6 pointer of

node 1 in a pair corresponding to node-pair a in B points to node 1 in a pair corresponding

to node-pair b, then p6(1,1)(a) = b and pS(1, 2)(a) = G. Other cases are handled similarly (see

Figure 4.1).

Since we are working with node-pairs in B , we need to designate where the center is within

a pair. The structure of B tells us whether a node-pair contains the center of the structure of

A by identifying that node-pair as the center. Then we can use a pointer 0 and two additional

nodes H, and 12 in B to tell us whether the center is node 1 or node 2 by having 0 point to

1 or H2, as appropriate.

We initialize B by creating nodes G, I11, and H2. After we set their pointers appropriately,

we are ready to simulate A.

28

lII

I
l
l

(current center)
I inta6oe[(1,1)

initial node initial node

I ,(1,1),6(2,2)

!Q (12) Y (,1

30
42 1 -----)[

ORIGINAL SIMULATIONI
(nodes numbered in sequence they were created)

Figure 4.1: Reducing the number of nodes by 1/2

2
I
I
I 29

I

Rather than describe the simulation of A in tedious detail, we discuss how to simulate one

instruction, create 6. The other instructions are simulated analogously.

To simulate create 6, we first find the last node-pair created by following the - pointer of

G. Call this node-pair a. We then determine whether node-pair a corresponds to a single node

in A (if an odd number of nodes have been created in the execution of A at this point) or to

an actual pair. If p6(2,1)(a) = G and P6(2,2)(a) = G, then the node to be created in A is the

second in the node-pair a. In this case, we assign the appropriate pointers from the current

center to a, and we also assign the appropriate pointer (either 6(2, 1) or 6(2,2)) to the current

center from a.

In the case where at least one of 6(2, 1) or 6(2,2) does not point to G, we must create a new

node-pair in B. Then we make the appropriate pointer assignments from this new node-pair to

the current center and to G.

With the addition of a few extra pointers, we can eliminate H1, H2, and G. We simply

encode the information these nodes provide with extra pointers from the initial node. For

example, we could substitute pointers 01 and 02 for 0. One of these two would point to the

current center node-pair from the initial node to indicate whether the center is node 1 or node

2.

If A creates s(n) nodes, then B creates [s(n)/21 nodes (if we eliminate H 1, H2, and G).

We can then generalize the procedure (or continue to apply it repetitively) to achieve space

complexity cs(n) for any c < 1. 0

30

Note that this simulation does not establish space compression for capacity complexity: if

3 the pointer alphabet size of the original machine is d, then the alphabet size of the simulator

is d(1/c) 2.

I Although space compression is possible using mass as the space measure, it is unclear

3 whether pointer machines also enjoy the linear speedup property of Turing machines.

4.3 Space Requirements and the Invariance Thesis

3 Slot and van Emde Boas (1988) proposed the following Invariance Thesis:

3 "There exists a standard class of machine models, which includes among others all

variants of Turing machines, all variants of RAMs and RASPs with logarithmic

I time and space measures, and also the RAMs and RASPs in the uniform time

3 and logarithmic space measure, provided only standard arithmetical instructions

of additive type are used. Machine models in this class simulate each other with

I polynomially bounded overhead in time and constant factor overhead in space."

3 They showed that using the proper space measure for RAMs, the thesis is true for RAMs

and Turing machines in its strictest interpretation; i.e., where the time and space bounds on

simulations are met simultaneously. The RAM space measure they proposed charges, for each

I register used, the logarithm of the register address plus the logarithm of the largest value stored

3 in the register during the computation.

An obvious question is whether this thesis applies as well to pointer machines. Sch6nhage

1 (1980) presented a real-time equivalence between unit-cost SRAMs, which meet the qualifica-

3 tions of the thesis with respect to time, and pointer machines. So the thesis holds for pointer

machines with respect to time complexity. As van Emde Boas (1989) has noted, equivalence

I
31I

with respect to space complexity depends on the definition of the space measure. The following

results make this clearer.

Theorem 4.2 If s(n)/logs(n) nodes can be created by a pointer machine in time O(t), then

every multitape Turing machine of space complexity s(n) and time complexity t(n) can be sim-

ulated by a pointer machine of mass complexity 0(s(n)/log s(n)) and time complexity 0(t(n)).

This applies whether both machines are deterministic, nondeterministic, or alternating.

Proof. We demonstrate how the simulation works for deterministic machines and then show

how the result extends to nondeterministic and alternating machines.

The following simulation holds for Turing machines with multiple worktapes; however, for

simplicity, we explain how to simulate a Turing machine with a single one-way infinite worktape

and a read-only input tape. Without loss of generality, the worktape alphabet of the Turing

machine is {0, 1}.

We design a one-to-one correspondence between the storage configurations of a Turing

machine M using space s and the configurations of a pointer machine M' with 0(s/log s) nodes:

we partition the worktape of M into blocks of size b = log(s/logs). With this partitioning,

there are s/b = O(s/log s) blocks. M' represents the tape contents with three node structures:

the tree, the blockset, and the cache (see Figure 4.2).

The tree is a complete binary tree of height b. The blockset consists of 0(s/log s) nodes,

Oo, 3 1,... , each node representing one block. The contents of a particular block are represented

by a pointer to a leaf of the tree. Since the tree has 2 b = s/logs leaves, there is a one-to-one

correspondence between the leaves of the tree and the contents of a block. This one-to-one

correspondence can be observed by noting that each leaf of the tree can be reached from the

root by following a unique sequence of left and right branches. By assigning "0" to each left

32

I f-

INITIAL3NODEL R

L R L R

3 TREE

0 1

CACHE

BLOCKSET

IJ
Figure 4.2: Representing a Turing machine with pointer machine nodes

33

branch and "1" to each right branch, we assign a b-bit number to the leaf. This b-bit number

corresponds to a unique configuration of the contents of a block of b cells.

Now consider two adjacent blocks Bi and Bi+I of M, such that the worktape head is

currently in either Bi or Bi+1. Bi and B+I are represented in the blockset by /3 and 3i+,,

respectively. During the simulation, M' keeps the contents of #i and 3i+l in the cache.

The cache consists of a chain of 2log(s/logs) nodes and two additional nodes, "0" and "1."

Each node in the chain has a pointer to either the "0" or the "1" node, so that the entire chain

is a direct representation of two adjacent blocks of M's worktape.

M' decodes a node /3i into the cache as follows: M' finds the tree leaf pointed to by Oi. M'

then traces the path of the tree to the root, noting at each tree node whether it was a right or

a left child. For each tree node in the path, M' sets a pointer of a node in the cache to the "0"

or the "1" node, depending on whether the tree node was a right or left child.

M' encodes the contents of half the cache back to the blockset by following the above steps

in reverse.

The simulation proceeds as follows: M initially builds the blockset, tree, and cache. We

assume that blocks are numbered from left to right, that all cells of the worktape of M contain

0, and that M starts with its worktape head on the leftmost tape cell. So M' initially decodes

30 and /31 into the cache. M' then begins the actual simulation of Al.

Assume /3 and /Oi+ are decoded in the cache. As long as the tape head remains in Bi

and Bi+1, M' performs a straightforward simulation of Al, using the cache. Finite control and

input processing of M are simulated in a straightforward manner using finite control and input

processing of M'. When the tape head moves to the right of Bi+ 1, M' encodes Bi back to Oi

and decodes i3i+2 into the cache, shifting to the left the "contents" of Bi+I currently in the

34

I cache (by using a few extra pointers to mark the ends and the middle of the cache, Al' can

3- "shift" the cache to the left by switching pointers so that the right b nodes are now the left b

nodes). If the tape head moves to the left of Bi, then a similar operation occurs. At this time,

I since the worktape head of M is in the middle of two blocks, M' can simulate at least b steps

I of M before performing the encoding and decoding operations again.

During the simulation, M' creates 0(s/log s) nodes: 0(s/log s) nodes for the tree and block-

I set and 0(log(s/logs)) nodes for the cache. Therefore M' simulates M with mass 0(s/logs).

3The straightforward simulation in the cache requires a total of O(t) time. The only other

time requirement is for encoding and decoding the blocks and shifting. Shifting takes only a

I constant amount of time. Encoding and decoding can be done in O(b) time, since that is the

3 height of the tree. Because Al' maintains two decoded blocks, it performs an encoding and

decoding only every O(b) steps, so the total time required for the simulation is O(t).

I To prove that this works for nondeterministic and alternating machines, we note that the

* construction implies an instruction-by-instruction simulation; thus each computation path can

be treated as a separate simulation. So each computation path of the Turing machine is

I simulated in an efficient manner by the corresponding computation path of the pointer machine.

* 0

Dymond and Cook (1980) use a structure similar to the tree and blockset in their analysis of

I the relationship between deterministic Turing machines and hardware modification machines (a

3 hardware modification machine is a collection of variably connected, synchronously operating

finite state transducers).U
Corollary 4.3 If s(n)/logs(n) nodes can be created by a pointer machine in time O(t), then

I every multitape Turing machine of space complexity s(n) and time complexity 1(n) can be sim-

1 35
I

ulated by a pointer machine of capacity complexity O(s(n)) and time complexity O(t(n)). This

applies whether both machines are deterministic, nondeterministic, or alternating.

Proof. By Proposition 2.5, a pointer machine of mass complexity s has capacity complexity

O(slogs). By Theorem 4.2, we know that a Turing machine using space s can be simulated by

a pointer machine of mass complexity s/logs. This pointer machine has capacity complexity

0((s/log s) log(s/log s)) = O((s/log s) log s) = 0(s). 0

Theorem 4.2 sharpens the following result of van Emde Boas (1989), whose pointer machine

simulator used mass 0(s/log s), but time 0(t ') (although his simulation did not require s/log s

to be constructible):

Theorem 4.4 (van Emde Boas, 1989) Every Turing machine of space complexity s(n) can

be simulated by a pointer machine of capacity complexity O(s(n)) (hence, of mass complexity

0(s(n)/logs(n))) in polynomial time. This applies whether both machines are deterministic or

nondeterministic.

Van Emde Boas also gave a result for simulation in the other direction:

Theorem 4.5 (van Emde Boas, 1989) Every pointer machine of capacity complexity s(n)

(hence, of mass complexity s(n)/log s(n)) can be simulated by a Turing machine in space s(n)

in polynomial time. This applies whether both machines are deterministic or nondeterministic.

Since Slot and van Emde Boas showed that the Invariance Thesis holds in its strictest

interpretation (i.e., where time and space bounds are met simultaneously) for Turing machines

and RAMs using the sizeb space measure, we can establish a relationship between RAMs and

pointer machines:

36

Corollary 4.6 Every pointer machine can be simulated by a RAM in polynomial time and with

constant factor overhead in space (sizeb space measure for RAMs).

Corollary 4.7 Every RAM can be simulated by a pointer machine in polynomial time and with

constant factor overhead in capacity (sizeb space measure for RAMs).

If we consider capacity as the true measure of space in pointer machines, then we must

reevaluate the result of Halpern et al. (1986): that every pointer machine of time complexity t

can be simulated by a pointer machine of space complexity O(t/log t). The authors considered

mass as the space measure. A different approach is necessary to achieve the same result for

capacity, if it is even possible.

Using Theorem 4.4, we obtain a time-space result in the other direction.

Theorem 4.8 Every pointer machine of capacity complexity s(n) can be simulated by a pointer

machine of time complexity O(nO(1)'(')). This applies whether the machines are deterministic

or nondeterministic.

Proof. Let X be D or N.

XPM-CAPACITY(s) = XTM-SPACE(s) (Theorem 4.4)

C XTM-TIME(nO(1)8) (see Yap, 1987)

C XPM-TIME(nO(1) 3) (Sch6nhage, 1980)
0]

Combining Theorem 4.8 and Proposition 2.5, we have:

Corollary 4.9 Every pointer machine of mass complexity s(n) can be simulated by a pointer

machine of time complexity Q(ns(n)°(3('))). This applies whether the machines are determin-

istic or nondeterministic.

37

Proof. Let X be D or N.

XPM-MASS(s) = XPM-CAPACITY(O(slogs)) (Proposition 2.5)

C XPM-TIME(O(nO(1)(3 log 3))) (Theorem 4.8)

= XPM-TIME(O(ns()))

4.4 Space and Time Hierarchies

We obtain pointer machine space and time hierarchies that are analogous to hierarchies for

RAMs and Turing machines. The space hierarchies for pointer machines follow from the space

hierarchy for Turing machines (Hartmanis et al., 1965a; Sipser, 1980) and Theorems 4.4 and

4.5.

Corollary 4.10 If s2(n) is capacity-constructible, then there is a language L C {0, 1}* such

that some pointer machine recognizes L within capacity O(s 2(n)), but for any function sl(n) =

o(s2(n)), no pointer machine recognizes L within capacity O(s1 (n)).

Proof.

XPM-CAPACITY(s 1) C XTM-SPACE(s1) (Theorem 4.5)

C XTM-SPACE(s 2) (Hartmanis et al., 1965a)

= XPM-CAPACITY(O(s 2)) (Theorem 4.4)
0

Corollary 4.11 If s2(n) is mass-constructible, then there is a language L C {0,1}" such that

some pointer machine recognizes L within mass O(s 2(n)), but for any function sl(n) = o(s2(n)),

no pointer machine recognizes L within mass O(si(n)).

38

Proof.

XPM-MASS(si) = XTM-SPACE(slogs,) (Theorem 4.5)

C XTM-SPACE(s 2 1ogs 2) (lHartmanis et al., 1965a)

= XPM-MASS(O(s 2)) (Theorem 4.4)
0

Corollary 4.12 Ift(n)/log t(n) is mass-constructible, then PM- TIME(t(n)) is strictly included

in PM-MASS(t(n)).

Proof.

PM-TIME(t) 9 PM-MASS(O(t/logt)) (Halpern et al. (1986))

C PM-MASS(t/logt) (Theorem 4.1)

C PM-MASS(t) (Corollary 4.11).

0

To prove the time hierarchy for pointer machines, we need the following useful result:

Lemma 4.13 For every pointer machine M there is a pointer machine M' with JA'J = 2 that

simulates M in real time and constant factor overhead in space.

Proof. Let A be the pointer alphabet of M, with d = JAI, and let A' = {a,3} be the

pointer alphabet of M'. For each node x in M and each bi in A, let bi point from z to yi. For

each node z in M there is a chain of d + 1 nodes in M', connected by a pointers, with one

distinguished node x' corresponding to x.

Consider one such chain in M'. From each node in the chain, except x', use the 0 pointer

to point to the appropriate y corresponding to y, (see Figure 4.3). 0

39

Fi 4 a a a

6i 62 Y3 3 4

63 0

Y4

61 a3 62 =aa3 b3 aaa3 b4 aaaa3

ORIGINAL SIMULATION

Figure 4.3: Simulating a pointer machine with I 'I = 2.

Theorem 4.14 If t 2 (n) is time-constructible by a pointer machine, then there is a language

L C {0,1}* such that some pointer machine recognizes L within time O(t 2 (n)), but for any

function ti(n) = o(t2 (n)), no pointer machine recognizes L within time O(ti(n)).

Proof. Using techniques Cook and Reckhow (1973) applied to exhibit a time hierarchy for

RAMs, we construct a universal pointer machine that can diagonalize over time ti(n) compu-

tations in time O(t 2 (n)) (see also Hartmanis and Hopcroft, 1971).

It is straightforward to show how a pointer machine program can be encoded with alphabet

{0, 1): we first encode each pointer machine instruction with {0, 1}. To properly encode instruc-

tion labels referenced in if instructions, we may assume that every instruction is labeled and

that the instructions are labeled sequentially with the first instruction labeled 1. We then use a

unary encoding for the instruction label referenced in an if instruction. To encode the pointer

40

I

I machine program, we concatenate the encodings of the instructions comprising the program.

Let M, be the pointer machine whose encoding is w.

By Lemma 4.13 we may assume without loss of generality that for the machine to be

I simulated, IAI = 2.

For every w, let wi be the encoding in w of the instruction of M, labeled i. Let k(A ,) =

max{jwil}. Thus k(M,.) is a constant that depends only on M. Define diagonalization lan-

I guage L as follows: if MA, with input w halts in time t2(Iwl)/k(M), then w js in L if and only

if M... d--s not accept w. If M does not halt in time t2(IwI)/k(Mo), then w is not in L.

Now suppose some pointer machine Al recognizes L in time cti(n), where c is a constant de-

I pending on L. Since ti = o(t 2), there is a w sufficiently long such that cti(IwI) < t 2 (Iwl)/k(f,)

and M, accepts exactly the same language as M: add a sufficient number of accept instruc-

tions immediately after an accept instruction in the program of Af and call the encoding of

I this new pointer machine w. By our definition of L, W E L (i.e., w is accepted by MA) if and

only if w is not accepted by M ; so we have a contradiction. Thus no pointer machine accepts

L in time O(t1 (n)).

We now construct a universal pointer machine M that recognizes L in time O(t 2(n)). The

key issues involved in the construction of such a machine are that it (1) constructs an appropriate

simulator of M. in time O(jwj), (2) simulates M'l/ in linear time, and (3) keeps track of the

elapsed time of the simulated machine so that it can stop after t2(n)/k(Al") simulated steps.

M goes through three stages: initialization, preprocessing, and simulation.

1. Initialization:

M first creates eight type nodes with an appropriate type pointer corresponding to each.

Each type node corresponds to a distinct pointer machine instruction type.

41

I

M creates two alphabet nodes (since JI = 2) with an appropriate alphabet pointer cor-

responding to each. M uses the alphabet nodes to designate appropriate arguments for the

pointer machine instructions, as described below.

Initialization takes a constant amount of time.

2. Preprocessing:

M reads w and decodes it, creating a node for each instruction. Call tke set of instruction

nodes the instruction list. Each instruction node has the following additional pointers:

a. a successor pointer to the next instruction node.

b. an instruction pointer to the appropriate type node.

c. an argument pointer to an argument structure described below.

d. a jump pointer, for an if instruction, to point to the instruction node to which control

could be passed.

e. a beginner pointer to the initial node (used to set the jump pointer appropriately).

For each instruction node, M uses the type pointer to determine the instruction type of the

instruction node. M uses alphabet pointers in a similar manner.

The argument structure is necessary for the create, center, assign, and if instructions.

These instructions have arguments that are words in A*. For any instruction with argument

W E A* such that [WI = j, the argument structure contains a chain of j nodes, each node

having a pointer to one of the alphabet nodes so that M can access the chain to determine the

argument W.

42

I

ITo set the jump pointers, Al makes a second pass through the instruction nodes and the

_ input word w. For each node representing an if instruction, M returns to the initial node with

the beginnerpointer (recording the current instruction node with a pointers. IF .t, i ..,struction

U specifies a conditional jump to instruction m, M uses the unary encoding of m in w to move

3 the jump pointer to the mth instruction node. In this way, setting the j'm J pointers takes time

O(Iwl).

I During preprocessing, M also creates a linked list of t2([wI) nodes called the counter to keep

3 track of elapsed time of the simulation. This is possible since t 2 is time-constructible. There is

one special pointer to the last node in this list. M also creates a linked list of k(.Al) nodes to

serve as the auxiliary counter; the use of the auxiliary counter is explained below.

3 Three additional pointers from the initial node keep track of the simulation. The execute

pointer points from the initial node to the node representing the instruction being simulated.

I The counter pointer points to a node in the counter to indicate how much time has elapsed.

3 The auxiliary pointer points to a node in the auxiliary counter.

Preprocessing takes O(t 2(IwI)) + O(IwI) = O(t 2 (IwI)) time. Figure 4.4 shows the result of

U initialization and preprocessing (not all pointers or nodes are shown).

I
3. Simulation:

To begin the simulation, M resets the execution and counter pointers to the beginnings of

the instruction list and counter, respectively. Al also resets the input tape head to the leftmost

nonblank tape cell. M maintains a simulation arena to keep track of the simulation, so Al

creates a node to serve as the initial node of .1f, in the simulation arena.

I
1 43

I

alphabet nodes

argument structure 2

type nodes

acc rej cre

0 instruction list

0-0--&- counter

Figure 4.4: Preparation for simulating M

44

Using the instruction pointer, M accesses the first instruction node, decodes the instruction,

and executes the instruction in the simulation arena. Al then accesses the next instruction node

by following the successor or jump pointer, as appropriate. It continues in this manner, decoding

instructions and executing them in the simulation arena, until it reaches an accept or reject

instruction node.

The initial node serves as the point of reference for the simulation. It has pointers to

the current instruction node, the current counter node, and the current center of Alw in the

simulation arena. There is a pointer from every node in the A-structure to the initial node so

that it may always be referenced.

For each simulated instruction, M moves the counter pointer across k(-Mw) nodes of the

counter, using the k(M,) nodes of the auxiliary counter. Since M has a special pointer to the

last counter node, M can compare the special pointer with the counter pointer to determine

whether t2(lwI)/k(Al) steps have elapsed. If so, then Ml rejects w. Otherwise, Al accepts w if

and only if MAl rejects w.

Since the length of each encoded instruction of Al.. is at most k(M,), M can simulate each

step of M, in ck(Mw,) steps, for constant c' depending only on Al. For each step, Al counts

off k(MA,) of the t2(IwI) counter nodes; therefore, Al accepts L in time O(t 2(IwI)).

4.5 Nondeterministic Pointer Machines

Using space equivalence for pointer machines and Turing machines, we obtain a result for pointer

machines based on Savitch's (1970) result comparing deterministic and nondeterministic Turing

machine space:

45

Theorem 4.15 For s(n) > log n, every nondeterministic pointer machine of capacity complex-

ity s(n) can be simulated by a deterministic pointer machine of capacity complexity O(s(n)2).

Proof.

NPM-CAPACITY(s) C NTM-SPACE(s) (Theorem 4.5)

C TM-SPACE(s 2) (Savitch, 1970)

C PM-CAPACITY(O(s 2)) (Theorem 4.4)
0

Corollary 4.16 For s(n) >_ (log n)/loglog n, every nondeterministic pointer machine of mass

complexity s(n) can be simulated by a deterministic pointer machine of mass complexity

O(s(n)2 logs(n)).

Proof.

NPM-MASS(s) = NPM-CAPACITY(O(s log s)) (Proposition 2.5)

C PM-CAPACITY(O(s 2(logs) 2)) (Savitch, 1970; slogs > logn)

= PM-MASS(O(s 2 logs)) (Proposition 2.5)
0

4.6 Alternating Pointer Machines

One result of Chandra et al. (1981) is that every alternating Turing machine running in time

t can be simulated by a deterministic Turing machine using space t. The following theorem

extends that result to pointer machines. It strengthens the result of lalpern et al. (1986)

that every deterministic pointer machine running in time t can be simulated by a deterministic

pointer machine using O(t/log t) nodes.

Theorem 4.17 Every alternating pointer machine running in time t(n) can be simulated by a

deterministic pointer machine using t(n)/log t(n) nodes.

46

I
Proof. We construct deterministic pointer machine M' that simulates alternating pointer

3 machine M. Without loss of generality, assume that M alternates strictly between universal

and existential states at each step, and that at every step there are exactly two choices. We

first describe how the simulation is accomplished with O(t) nodes, and then we show how to

reduce this to 0(t/logt). The simulation does not require t or t/log t to be constructible: M'

begins by assuming t = 1; when more nodes are necessary, M' begins the simulation with the

value of t incremented by 1. In this way, M' uses the minimum number of nodes necessary.

3 M' begins by creating a chain of t computation nodes and two additional nodes designated t

and r. Using the computation node chain Al' performs a depth-first traversal of the computation

tree of M in a manner analogous to the proof of Theorem 3.2 of Chandra et al. (1981). Each

computation node records a choice made by M on a particular branch of the computation tree

with a choice pointer to the t or the r node, indicating a left or right branch, respectively. M'

1 initially sets the choice pointer of every computation node to the t node.

3 For each branch of the computation tree of Al, MA ' uses the recursive simulation procedure

SIMULATE of Halpern et al. (1986), referring to the computation node chain to determine the

proper instruction sequence. SIMULATE uses 0(t/logt) nodes. When SIMULATE terminates

3 for any particular branch of the computation tree, Al' backtracks along the computation node

chain, resetting pointers appropriately to specify the next branch to be considered.

This simulation uses ct nodes, for some constant c, since t computation nodes are required.

3 The chain of t computation nodes is equivalent to a Turing machine tape of t cells, each of

which holds t or r. We reduce the number of nodes to O(t/log t) by encoding the chain using

the tree and blockset in the proof of Theorem 4.2 (see Figure 4.2).

3 By Theorem 4.1, we can simulate the alternating pointer machine using t/logt nodes. 0

47

Corollary 4.18 Every alternating pointer machine running in time t(n) can be simulated by

a deterministic Turing machine using space t(n).

Proof.

APM-TIME(t) C PM-MASS(t/logt) (Theorem 4.17)

= TM-SPACE(t) (Theorem 4.5)
0

We can obtain other results based on the theorems of Chandra et al. (1981).

Theorem 4.19 For s(n) > n, every nondeterministic pointer machine of capacity complexity

s(n) can be simulated by an alternating pointer machine in time O(s(n)2).

Proof.

NPM-CAPACITY(s) C NTM-SPACE(s) (Theorem 4.5)

C ATM.TIME(O(s 2)) (Chandra et al., 1981)

C APM-TIME(O(s 2)) (Theorem 4.2)
0

Corollary 4.20 For s(n) _ n/log i., every nondeterministic pointer machine of mass complex-

ity s(n) can be simulated by an alternating pointer machine in time O((s(n)log s(n))2).

Proof.

NPM-MASS(s) = NPM-CAPACITY(O(s log s)) (Proposition 2.5)

C APM-TIME(O((slogs) 2)) (Theorem 4.19)
0

Theorem 4.21 For s(n) > logn, every alternating pointer machine of capacity complexity

.(n) can be simulated by a deterministic pointer machine in time O(1)s(n).

48

Proof.

APM-CAPACITY(s) C ATM-SPACE(s) (Theorem 4.5)

C TM-TIME(O(1)') (Chandra et al., 1981)

C PM-TIME(O(1)') (Theorem 4.2)

0

3 Corollary 4.22 For s(n) >_ (log n)/log log n, every alternating pointer machine of mass com-

plezity s(n) can be simulated by a deterministic pointer machine in time s(n)° ("(')).

Proof.

NPM-MASS(s) = NPM-CAPACITY(O(slogs)) (Proposition 2.5)

3 C PM-TIME(0(1)c -'og (Theorem 4.21)

= PM-TIME(sO('))I0

49

Chapter 5

Optimal Simulation of Tree Machines by Random Access

Machines

We present an optimal on-line simulation of a tree machine of time complexity t by a log-cost

RAM of time complexity O((t log t)/loglog t). This result is a complement to Loui's (1983) sim-

ulation of tree machines by multidimensional Turing machines and Reischuk's (1982) simulation

of multidimensional Turing machines by tree machines. We begin by exhibiting a real-time sim-

ulation of a tree machine by a unit-cost RAM.

5.1 Simulation by Unit-cost RAMs

Theorem 5.1 Every tree machine can be simulated by a unit-cost RAM in real-time.

Proof sketch. We design a unit-cost RAM R that simulates tree machine T with worktape

W. R has a contents memory, a parent memory, and several working registers. Let contents(x)

(respectively, parent(x)) be the register with address x in the contents (respectively, parent)

memory. Contents(x) at address x contains the contents of cell(x) at location x-in the worktape

of T. If cell(x) is visited by T, then parent(x) contains the worktape location of the parent of

cell(x). The working registers are used as temporary storage and to keep track of which cell is

currently accessed by T.

R simulates one step of T with a constant number of accesses to the two memories and the

working registers. For example, if the head moves from cell(x) to a child of cell(x), then R

50

computes location 2x for the left child or 2z + 1 for the right child with one or two additions

and stores x in parent(2z) or parent(2x + 1). Thus to simulate t steps of T takes O(t) time on

R.
0

5.2 Simulation by Log-cost RAMs

5.2.1 Upper Bound

Using the simulation in Theorem 5.1, we can show that every tree machine can be simulated on-

line by a log-cost RAM in time O(t log t); however, we describe below a more efficient simulation

by log-cost RAMs.

For simplicity, we consider tree machines with only one tree worktape, but our results gen-

eralize to multiple worktapes. Let T be a tree machine of time complexity t with one worktape

W. We show that there is a RAM R that simulates T on-line in time O((tlogt)/oglogt).

Since this is an on-line simulation, we do not know n or t(n) ahead of time. To solve this

problem, we use a technique of Galil (1976), adopted by Loui (1983; 1984a) and Katajainen et

3 al. (1988). Let t' be the elapsed time ofT (as recorded by R) and let te be R's current estimate

of the total running time of T. R begins the simulation with te = 2. When t' exceeds te, R

I doubles t, and restarts the entire simulation. R continues this process of doubling t, whenever

I t' exceeds t, until the simulation is finished. R records the input in a separate memory as

described below so that for each value of t, > 2, it is unnecessary to move the input head until

I t' > t'/2. We show that for each value of t,, the time of the simulation is 0(t,(log t,)/log log t,).

3 It is easy to show that the sum of the simulation times for all values of t, is 0(t'(log t')/log log t').

We first provide a brief description of the simulation. We choose parameters h and u such

I that u = 2 -
h + 1 _ 1. We specify the values of h and u later. R has several memories. R maintains

I

in the main memory the entire contents of W. The main memory represents W as overlapping

subtrees, called blocks. R represents the contents of each block IV, in one register r of the

main memory. When the worktape head is in a particular block W', R represents W., in the

cache memory. Step-by-step simulation is carried out in the cache, which represents the block

W. in breadth-first order, one cell of Wr per register of the cache.

Because blocks overlap, when the worktape head exits W, it is positioned in the middle of

some other block W.. At this time R packs the contents of the cache back into r. in the main

memory and unpacks the contents of ry into the cache.

The details of the simulation follow.

Let W[x,s] denote the complete subtree of W of height s rooted at cell(x). A block is any

subtree W = W[x,2h + 1] such that the depth of cell(z) is a multiple of h + 1. Since a block

has height 2h + 1, it contains 2 2h+2 - 1 = u cells. Let the relative location of a cell within a

block be defined in a manner similar to the location of a cell, where the relative location of the

root of the block is 1, the relative locations of its children are 2 and 3, and so on.

Call a block Wp the parent block of W_, if cell(p) is the ancestor of cell(x) at distance h + 1

from cell(x). If W., is the parent block of We, then W, is a child block of -V:. Each block has

2 h+1 child blocks. The topmost block of W, which contains the root of TV, is called the root

block.

Define the top half of a block W., as W[x, h], and define the bottom half of IV, as the

remaining cells of the block. Note that the top half of the block W is part of the bottom half

of Wp, its parent block, so that the blocks overlap. Call the portion of I'V, shared by l'VP (i.e.,

the subtree W[z, h]) the common subtree of W., and Wp.

52

I

R precomputes in separate memories two tables, half and translate. We explain later how

3 R uses these tables. Here we describe their contents and how they are computed. Let half(z)

(respectively, translate(z)) be the register in half (respectively, translate) at address z.

Half (z) contains [z/2J. To compute half, for z = 1,... ,u/2, R stores z in half(2z) and

3 half (2z + 1).

For z = 2 2h+,,...,u, translate(z) contains (z mod 2 h+1) + 2 h+1 . R never refers to any

register in translate with address less than 22h+1. Translate is computed as follows:

Ii := 2h + l

for z = 2 2h+1 to u do
translate(z) := i

I i:=i+I
ifi = 2 2h+2 then i := 2h+1

endI
We now show how R simulates the tree machine using the cache. Assume the head of T is

I currently scanning a cell in block W,. Let cache(z) be the register in the cache with address

3 z and let cell(x,z) be the cell in W. with relative location z. For each z = 1,... ,u, register

cache(z) contains the bit in cell(x, z); for example, cache(.) contains the contents of cell(x, 1)

I = cell(x), the root of W. Thus R uses u registers of the cache, each register containing one

* bit.

While the head of T remains in W:, R keeps track of the head's location with the cache

I address register in the working memory, a memory maintained by R for storing information

3 necessary for miscellaneous tasks. If the cache address register contains z, then cell(z,z) is

currently being accessed in T.

I To simulate a tree machine operation at cell(x, z), R loads the contents (one bit) of cache(z)

3 into AC. Once the contents are in AC, R simulates one step of T by storing either 0 or 1 in

cache(z).

5
53I

If the head of T moves to a child of cell(z, z), then the new address for the cache address

register, as well as the relative location of the new block cell being read, is either 2z or 2z + 1.

With one or two additions, R computes this new address and places it in the cache address

register. When the head of T moves to the parent of cell(x, z), the address of the corresponding

cache register is [z/2J. Because R has no division operation, it accesses table half to retrieve

the new address in cache.

To describe what happens when the worktape head moves out of the current block, we first

show how the blocks are stored in main memory. Main memory is divided into pages consisting

of 2h+1 + 3 registers each. A page corresponds to a visited block of W. Let page(x) be the page

representing W,. Define the address of a page to be the address of the first register in the page.

The first register in page(x) is the contents register. For the page representing the root block,

the contents register contains the entire contents of that block. For every other block WY, the

contents register contains the contents of the bottom half of W.. The contents of cells in a

block are kept in breadth-first order; i.e., reading the binary string in the contents register from

left to right is equivalent to reading the bottom half of the block it represents in breadth-first

order. Initially, all cells of a block contain 0, so all contents registers initially contain 0.

Following the contents register is the rank register, containing a number t between 1 and

2 h+i indicating that W., is the eth child of its parent block. The next register is the parent

register, containing the address of the page representing the parent block of W. The next 2 h+1

registers are the child registers of W,.. The mth child register of page(x) contains the address

of the page representing the m~h child block of TV,, or 0 if that child block has not been visited

(see Figure 5.1).

54

3 TREE WORKTAPE

W. depth (j)(h + 1)

head Top half of W~

3 depth (j + 1)(h + 1)

I Bottom half of IV.,

depth (j + 2)(h + 1)

AI----------- -
I MAIN MEMORY

Ia "bottom half of I."contents

3 rank
pgz)7 parent

3 / childi1

I 3 bottom half of W contents

1 rankI page (c)
a parent

3 Figure 5.1: Worktape IlV (head moves from W., to IV,~)

55

cache working main

.... ..011 trO il
-] lpage(p)

0

1

Figure 5.2: Updating page(p) in main memory

The first page in main memory corresponds to the root block. Blocks are then stored in

the order in which they are visited. The page address register, a register in working memory,

contains the address of the page in main memory corresponding to the currently accessed block.

Let W, be the currently accessed block and let Wp be the parent block of 1,V,. When the

tree worktape head moves out of W, so that it is positioned in the middle of a child block lVc,

R makes the proper changes to main memory and loads the cache from the contents register of

page(c).

In main memory, R updates the contents registers of page(x) and page(p). To update

page(x), R packs the contents of the registers of the cache which correspond to the bottom half

of V, into a single register in working memory (call it the transfer register, denoted by tr). R

then copies tr into the contents register of page(z) via AC (see Figure 5.2).

Updating page(p) consists of changing the bits of its contents register corresponding to the

common subtree of Vr and Wp. R first saves the contents of the cache that encode the common

subtree of W, and IV, in a portion of working memory, since this information is needed in the

cache as the top half of IV,. R also saves the contents of the cache that encode the common

56

I subtree of W., and Wp. R then loads the contents register of page(p) into tr and unpacks the

3 contents into the cache. The bits in working memory corresponding to the common subtree of

W. and Wp are then written into their proper locations in the portion of the cache representing

the bottom half of Wp. R then packs the contents of the cache into tr and copies tr into the

3 contents register of page(p).

R then determines whether W, has been visited before by checking the contents of the child

register of page(x) corresponding to IV,. If the child register contains a valid (i.e., nonzero)

3 address, then R uses that address to access page(c). R then unpacks the contents register of

page(c) into the cache. This action is similar to the manipulation of page(p) discussed above.

R loads the contents of the common subtree of W., and W, saved in working memory into the

3registers of the cache representing the top half of the block.

If the child register of page(x) contains 0, then R allocates a new page to maintain the

information on W,.

SfR modifies the page address register to reflect the fact that the worktape head is now

scanning block We. The address currently in this register is that of page(x). R writes the

address of page(c) in main memory to the page address register. R determines from the cache

3 address register the quantity t such that W, is the j1th child of IV. Then by accessing the fth

child register of page(x) in the main memory, R can determine the address of page(c).

To modify the cache address register to reflect the relative location of the head within block

3 IV, R first translates the relative location of the leaf cell(x, z) in IV- into its relative location

in W,. Since leaf cell(x, z) in IV, is the same as cell(c, (z mod 2 h+,) + 2 h+,) in IVc, R uses

the table translate described above. Using one or two additions, R then calculates the relative

I
57

location in W, of this cell's left or right child, depending on which branch tile worktape head

used to exit W. R then writes this new relative location into the cache address register.

A similar sequence of operations occurs if the worktape head moves out of a block (and

farther) into its parent block instead of into a child block. Then R uses the parent register to

determine the address of the page representing the parent block, and R uses the rank register

to determine the relative location of the worktape head within the parent block.

As described earlier, R maintains an estimate t, of the total running time of T. R doubles

t, whenever the elapsed time exceeds t, and restarts the simulation with this new value. The

portion of the input string read by T up to time t,/2 is maintained in R's input memory in

registers of length h. Input symbols read from time 1 to time h are contained in the first register

of input memory, those read from time h + 1 to time 2h are contained in the second register, etc.

Each register is unpacked into the input cache at its appropriate time, and the input symbols

are read by R. After t,/2 steps of the tree machine have been simulated, input is read from the

input tape. This new input is stored in the same manner as previous input.

When it is necessary to restart the simulation with a new value of t, R reorganizes the input

memory using packs and unpacks so that register lengths reflect the updated value of h.

To simulate tree machines with more than one worktape, R maintains a main memory, a

cache, and a working memory for each worktape.

By evaluating the cost of the simulation on a log-cost RAM, we derive the following result.

Theorem 5.2 Every tree machine running in time t(n) can be simulated on-line by a log-cost

RAM running in time O((t(n)log t(n))/loglog t(n)).

Proof. Because the blocks have height 2h + I and overlap by height h + 1, whenever the

worktape head moves out of a block, it is exactly in the middle of another block; i.e., T will take

58

at least h' = h + 1 steps before its worktape head exits this new block. Since the tree machine

computation has at most t steps, the work of updating main memory from cache (packing),

loading a new block into the cache (unpacking), and directly simulating h' steps is performed

at most t/h' times.

Updating main memory and loading a new block in cache involve the pack and unpack

operations and a constant number of accesses to main memory. Registers in main memory have

addresses no larger than (t/h')(2h+l +3). Thus accesses to main memory take time O(log t + h).

By Lemma 2.3, the time for the pack and unpack operations is O(ulogu). By Lemma 2.4,

the time to create the tables necessary for these operations is O(u2u). The time to compute

tables half and translate is O(u log u).

Simulating one step of the tree machine consists of a constant number of accesses to cache,

taking time O(log u). Thus simulating h' steps takes time Q(h'log u).

Simulating h input operations (those up to step t/2) takes time O(hlogh). Recording h

input operations (those past step t/2) also takes time O(h log h). Packing and unpacking takes

time O(h log h). Thus the time to simulate t/2 input operations and record t/2 additional input

operations is (t/h)O(hlogh). Reconfiguring the input memory for a new value of t also takes

time (t/h)O(h log h). Building the necessary tables for input simulation and recording takes

time O(h2h).

The total time required for R, then, is

(t/h')(O(logt + h) + O(ulogu) + O(h'logu)) + O(u2') + tlogh.

Since h = O(logu), the total time is

O(((tlogt)/logu) + tu + tlogu + u2u).

59

Choose h so that u = (log t)/log log t. Then the total time for the simulation is O((t log t)/log log t).

0

5.2.2 Lower Bound

We now show that the time bound of Theorem 5.2 is optimal within a constant factor. We

begin with an overview of Kolmogorov complexity, which we use to prove the lower bound.

Let a and r be strings in {0, 1}*, and let U be a universal Turing machine. Define the

Kolmogorov complexity of a given r with respect to U, denoted K(ar), as follows: let # be

a symbol not in {0, 1}*; then K(ar) is the length of g3 where f3 is the shortest binary string

such that U(I3#r) = a. Informally, K(alr) is the length of the shortest binary description of

a, given r. If r is the empty string, then we write K(a) for K(oaIT).

We say a string a is incompressible if K(a) _ jai. Note that for all n there are 2' binary

strings of length n, but there axe only 2' - 1 strings of length less than n. Thus for all n, there

is at least one incompressible string of length n.

A useful concept in Kolmogorov complexity is the self-delimiting string. For natural number

n, let bin(n) be the binary representation of n without leading O's. For binary string w, let Y be

the string resulting from placing a 0 between each pair of adjacent bits in w and adding a 1 to

the end. Thus TT1 = 101001. We call the string bin(IwI)w the self-delimiting version of w. The

self-delimiting version of w has length Iwi + 2log(JwI + 1). When we concatenate several binary

string segments of differing lengths, we can use self-delimiting versions of the strings so that

we can determine where one string ends and the next string begins with little additional cost

in the length of the concatenated string. Note that in such a concatenation it is not necessary

to use a self-delimiting version of the last string segment.

60

I

Kolmogorov complexity has recently gained popularity as a method for proving lower

bounds. Li and Vitanyi (1988) provide a thorough summary of lower bound (and other

complexity-related) results obtained using Kolmogorov complexity.

Theorem 5.3 There is a tree machine T running in time n such that for any log-cost RAM

I R, R requires time t(n) = Q2((nlog n)/log log n) to simulate T on-line.

I Proof. Tree machine T has one tree worktape and operates in real time. T's input alphabet

3 is a set of commands of the form (e, V)), where e E {0, 1, ?} and V) indicates whether the worktape

head moves to a child or parent of the current cell or remains at the current cell. Suppose T

I is in a configuration in which the cell x at which the worktape head is located contains e'. On

3 input (e, u), machine T writes e' onto its output tape, and the worktape head writes e onto cell

x if e E {0, 1}, but it writes e' (the current contents of x) onto x if e =?. At the end of the step

I the worktape head moves according to 7. For every n that is a. sufficiently large power of 2, we.

3 construct a sequence of n tree commands for which R requires time fQ((n log n)/log log n). As

in (Loui, 1983), the string of tree commands is divided into a filling part of length n/2 and a

3 query part of length n/2.

3 Let W be the worktape of T, and let x0 be the root of W. Let d = log(n/8). Denote the

complete subtree of W of height d whose root is x 0 by W17 . Let N = n/8. We consider the

3 complexity of the simulation in terms of N.

3 We fill Wd with an incompressible string r of length 2N - 1 such that 7 can be retrieved by

a depth-first traversal of Wd. This takes time 4N - 4 on T. We move the worktape head four

I more times (without writing) so that the total length of the filling part is n/2.

3 The query part consists of a series of questions. A question is a string of 2d = 2 log N tree

commands that causes the worktape head to move from the root x0 of the tree worktape to a

I
61I

cell at depth d and back to xO without changing the contents of the worktape. As the head visits

each cell during a question, T outputs the contents of that cell. T processes 2N/log N questions

Q1,Q2,... during the query part. Thus the query part takes time 4N = n/2. We show that

after each question Q1, there is a question Qj+i such that R takes time S2((Iog 2 N)/log log-N)

to process Qj+,, and Theorem 5.3 follows.

Assume that R has just processed question Qj. Let P(N) be the maximum time nec-

essary to process any possible next question. We show that some next question takes time

f2((log2 N)/log P). Consequently, by definition, P = fQ((log 2 N)/log P). To determine a lower

bound on P, we consider two cases:

(1) P < log2 N; hence, logP < 2loglogN. Thus we have the following:

P > c(log2 N)/log P, for some constant c (since P = Q((log 2 N)/log P)

> c(log 2 N)/(2loglogN);

(2) P > log 2 N.

In either case, P = fQ((log 2 N)/loglog N).

We first determine t, the sum over all possible next questions q, of the time required for R

to process q.

Divide worktape TV into S = (log N)/(2log P) sections, each of height 2logP. For s =

0, 1, ... ,S - 1, there are p 2-+2 exit points (bottom cells) in section s. We refer to any initial

segment of a question as a partial question and the portion of the question that is processed

while the worktape head is in one section as a subquestion (see Figure 5.3). To compute i,

we compute for s = 0, 1,..., S - 1 the total time ij required for R to process all possible

subquestions in section s. Since the depth of Wd is log N, there are N possible next questions.

Each of the p 2S+2 bottom cells of section s is visited during N/P 2
,

+ 2 of these questions.

62

I

partial question
through section s - 1

I

acces to2 log P

Xk subquestion

3Figure 5.3: Processing section s of worktape IV

3 Let a, be the string defined by the contents of the bottom cells of section s, from left to

right; clearly, lal = p2s+2.I
Lemma 5.4 The string a, is incompressible up to a term of O(slog P); i.e., K(a,) >_ lal -

3 O(s log P).

3 Proof. The incompressible string r, which gives the contents of W, can be specified by a

3string composed of the following segments:

1. a self-delimiting string encoding this discussion (0(1) bits)

2. a self-delimiting version of a binary string of length K(a.8) that specifies o,, (K(a.) +

I O(s log P) bits)

3 3. self-delimiting versions of the values of s and P (O(log s) + O(log P) bits)

I
63

3

4. a string specifying the bits in r but not in o, (2N - 1 - p2s+2 bits).

Thus K(r) _ K(a,)+ (2N - 1 - p 2 s+2)+ O(s log P). But K(r) _ 2N - 1; therefore, K(or) _

p2,+_ O(slog P). 0 Lemma 5.4

Lemma 5.5 Ifj > 1, then]logi > (1/2)tlogt.
t::1

Proof. For all i such that 1 < i < t, clearly (i- 1)(t - i) _ 0; hence i(- i + 1) > 1.

Consequently,

I £

Elogi = (1/2)E(logi+log(e-i+1))
i~l i=l

I

= (1/2)jlog(i(I-i+1))

>(1/2)Elogt
i=1

= (1/2)eloge.

0 Lemma 5.5

Lemma 5.6 For s = 1, 2,..., S - 1, the maximum number of distinct registers accessed during

the processing of all partial questions through section s - 1 is at most 4p 2 ,+l /log P.

Proof. Let C = 4P/log P. By Lemma 5.5, for P sufficiently large, L=1 log > P. The

prc essing of each partial question through section s - 1 could involve no more than C distinct

regikters; otherwise, because of the total cost of addresses of registers, R would exceed time

P for some next question. There are p2 ' different partial questions possible through section

s - 1, so there are no more than 4p 28 '-I/log P distinct registers accessed for all possible partial

questions. C0 Lemma 5.6

64

Let us consider a particular section s. Let r1 , r2,..., r, be the registers, in order of increas-

3 ing address, that R accesses to produce the same output that T produces when its worktape

head is in section s, excluding those registers accessed to process partial questions through

section s - 1. The address of ri is at least i. To compute a lower bound on i,, we assess for

each i the contribution to i, of accessing ri.

To determine the contribution of ri to is, we calculate the minimum number of possible

questions for which R accesses ri. For every bottom cell v, let q" be the subquestion that

3 causes T to visit cell v of the tree worktape. For 1 < i < rn, let Xi be the set of bottom cells

x of section s such that x E Xi if R accesses ri to process q. (see Figure 5.3). Thus if T visits

a cell in Xi when processing a question in section s, R accesses registerri when processing the

3 same question. We say that ri operates on the bottom cells in Xi. Since T visits one cell of Xi

while processing one of N/P 2 +2 possible questions, R accesses ri during the processing of at

least 1Xil(N/P 2 .+ 2) possible questions.

3 For 1 < i < m, the total access time for register ri in section s is at least the product of

log i (since the address of r, is at least i),]Xi[(the number of bottom cells that ri operates

on), and N/P 2 +2 (the number of questions during which one of these bottom cells is visited).

5 Summing the time incurred by access to each register yields:

i _ -- (log i)X4I(N/P 2.+ 2). (5.1)

i=l

Using Lemma 5.8 below, we can determine a lower bound for i,, but we first introduce the

following technical lemma.

3 Lemma 5.7 (Loui, 1984b [Section 4]) Let J and M be integers such that Al > J. A sorted

3 J-member subset of {0,..., M} can be represented with no more than 2J log(M/J) + 4J + 2

bits.

3
65I

Let h = (1/7)P 2 3+1.

Lemma 5.8 E jXdJ _ (1/23)P 2' + 2 .
i=h

Proof. Assume that the conclusion is false. Then rl,.. . ,rh operate on at least

(22/23)P 2 .+ 2 bottom cells in section s. We can specify the string o as follows: we obtain

the bits of Xh,... ,Xm explicitly. We obtain the other bits of a. by simulating R on each

partial question to a bottom cell of section s not in U Xk. On each such partial question, R
k=h

uses only registers rl,.. , rh-I and registers accessed in sections 1,...,s - 1. Thus o' can be

specified with a string composed of the following segments:

1. a self-delimiting string encoding the program of R and this discussion (0(1) bits)

2. self-delimiting versions of the addresses and initial contents of registers accessed in sections

1,..., s-1 (at most 8P 2.+ 2 /log P+O(s log P) bits - by Lemma 5.6, at most 4P 2s+i/log P

registers are required, and for each register, the contents and the address could each require

P bits.)

3. self-delimiting versions of the addresses and initial contents of r,..., rh-I ((2/7)P 2s+2 +

0(s log P) bits)

4. a string specifying positions of cells in X for k > h (we use Lemma 5.7 with J =

(1/23)P 2s+ 2 and M = p 2 S+ 2; this requires at most (14/23)P 2s+2 bits. The encoding

used to achieve Lemma 5.7 is such that the beginning and end of this string can easily be

determined.)

5. a string specifying the contents of cells in -k for k > h (at most (1/23)P 2s+ 2 bits).

66

I

I

3 This means that the number of bits needed to specify as is at most (151/161)P 2s+ 2 +

I . O (p +2/logp) < p2s+2 _ O(s log P) for sufficiently large P. Thus we have a contradiction of

Lemma 5.4. 0 Lemma 5.8I
3 Thus we have:

is EY((logi)jXjj(N/P 2, +2) (Inequality 5.1)

i=1

_ Z((logi)lXj(N/P2 +2))
i=h

- (N/P 2s+2)(logh) lXiI
i~h

_ (N/P 2"+2)(logh)(1/23)P 2-+2 (Lemma 5.8)

_ (1/23)N((2s + 1)iogP -log7) (definition of h)

3 > (1/23)Ns log P.

I Now sum is over all s to compute a lower bound for i, the total time required for R to

3 process all possible next questions:

S-1

s=0
S-1

> _((1/23)NslogP)

1 -- =0

> (1/23)N(logP N)/(4 log 2 P) - O((log N)/log P))

I > (1/92)((N log 2 N)/logP - O(NlogN)).

3 Since there are N questions, we divide i by N to derive the average time needed by R to

process the next question, 1((log2 N)/log P). Some next question must require time greater

than or equal to this average time. Since P is the maximum time for some next question,

I P >_ >((log2 N)/log P); hence, P = 1((log2 N)/log log N).

* 67

U

Thus for each question Qi, we can choose a next question Qj+I that takes time

Q((log2 N)/loglogN). Since the query part has N/(2logN) questions, our choice of ques-

tions means that the query part takes time t = (N/(2logN))fQ((log 2 N)/loglog N)) =

l((NlogN)/loglogN). The entire simulation takes at least time t. Since N = n/8, the

lower bound holds for n as well. 0 Theorem 5.3

Because the lower bound proof considers only the time involved in accessing registers, the

lower bound holds for RAMs with more powerful instructions, such as boolean operations or

multiplication.

5.3 Implications for Log-cost RAMs and Unit-cost SRAMs

The lower bound of Theorem 5.3 implies a lower bound on simulating a unit-cost SRAM by a

log-cost RAM. We present the theorem in terms of pointer machines instead of unit-cost RAMs.

Theorem 5.9 There is a pointer machine P running in time O(n) such that for any log-cost

RAM R that simulates P on-line, R requires time f2((nlog n)/loglog n).

Proof. Let T be the tree machine described in Theorem 5.3. Let P be a pointer machine

that simulates T. It is straightforward to show that every tree machine can be simulated by

a pointer machine in real time. T runs in time n, so P runs in time O(n). Now assume

there is a log-cost RAM that simulates P on-line in time o((nlogn)/loglogn). We thus have

an on-line simulation of a tree machine of time complexity n by a log-cost RAM running in

time o((nlogn)/loglogn). But we know from Theorem 5.3 that the lower bound on such a

simulation is fl((n log n)/log log n); hence we have a contradiction. 0

68

Chapter 6

Relationships between Multidimensional Turing Machines and

RAMs

U
6.1 Simulation of Multidimensional Turing Machines by RAMs

6.1.1 Simulation by Log-cost RAMs

I By composing our simulation in Subsection 5.2.1 of a tree machine by a log-cost RAM with

3 Reischuk's (1982) simulation of a d-dimensional Turing machine by a tree machine, we obtain

an on-line simulation of a d-dimensional Turing machine of time complexity t by a log-cost

I RAM running in time O((5dIog*ttlogt)/loglogt). But we improve this upper bound with a

* direct simulation.

Theorem 6.1 Every d-dimensional Turing machine running in time t(h) can be simulated

on-line by a log-cost RAM running in time O(t(n)(logt(n))l-(I/d)(loglog t(n))l/d).I
Proof. We design a log-cost RAM R that simulates d-dimensional Turing machine Al.

I Since this is an on-line simulation, we use the procedure of the simulation in Subsection 5.2.1,

* doubling t as necessary.

For simplicity, assume A! has one worktape; our results generalize to d-dimensional Turing

I machines with more than one worktape. Let s = ((logt)/loglogt)l/d. Partition the worktape

3 of M into boxes with side length s. Let base(i) be the base cell in box i. For every cell z in a

69

box, there are 3d boxes that contain cells with coordinates that all differ from the coordinates

of x by at most s; i.e., there are 3" boxes that are within distance s of cell x.

For box i, if base(i) = (il,i 2 ,. . ,id), let index(i) = idtd - + id-Itd- 2 + . . . + ii. R stores the

contents of box i (sd bits) in the register in main memory with address indez(i). Step-by-step

simulation is carried out in the cache. R conducts the simulation in t/s phases, each of s steps of

M. For each phase: R unpacks the contents of the 3 d boxes that are currently within distance

s of the worktape head (the head remains within these boxes during the phase); R simulates M

for s steps; and R packs the contents of the cache back to main memory. Using precomputed

values of t, t 2, ... , t d - I (R can compute each of these values in time 0(t)), R quickly computes

index(i') from indez(i) when box i' is adjacent to box i.

For each phase, R takes time 0(logt) to access main memory, O(logt) to compute the

address of registers in main memory representing the new blocks needed in the cache, O(s log s)

to simulate s steps in the cache, 0(sd logs) to pack and unpack the appropriate registers

(Lemma 2.3), and 0(s2-) = o(t) to build the appropriate tables (Lemma 2.4). Thus the total

time for the simulation is:

(t/s)(O(logt) + O(s logs) + O(sd logs)) + O(s2s)

= O(((tlogt)/s)+ tsd-l logs)

= O(t(logt) 1- 1 /d)(loglog t)l/d).

6.1.2 Simulation by Unit-cost RAMs and SRAMs

Sch6nhage (1980) proved that every multidimensional Turing machine can be simulated by a

unit-cost SRAM in real-time. Because a unit-cost RAM can simulate a unit-cost SRAM in

70

I real-time, it is clear that a unit-cost RAM can simulate a d-dimensional Turing machine in

3 real-time; however, we can do better by adapting a result of Grigor'ev:

Theorem 6.2 For t(n) > n(log n)l / d, every d-dimensional Turing machine running in time t

can be simulated on-line by a unit-cost RAM in time O(t(n)/(logt(n))l/d).

I Proof sketch. Grigor'ev (1979) presented an off-line version of this result. He adapted the

3 simulation of a one-dimensional Turing machine by a unit-cost RAM (Hopcroft et al., 1975).

We briefly sketch his simulation. Let M be a d-dimensional Turing machine running in time

t, and let R be the RAM simulator. Call a box of M of side length c(logt)l/d, where constant

3 c < 1, a block. A d-dimensional Turing machine is block-respecting if its worktapes are divided

into blocks and its heads pass block boundaries only at times that are integer multiples of

c(log t)l /d. Grigor'ev showed that M could be converted into a block-respecting machine M'

3 running in time O(t). We construct R to simulate M'.

R computes the O(tc) possible configurations for M'. For each of these configurations, R

simulates M' for c(log t) l /d steps to determine its next configuration. Computing the configura-

3 tions and next configurations take time 0(tc(log t)l/d). The actual simulation of il' consists of

0(1) table lookups for every c(log t)1/d steps of M'. Block adjacency information is maintained

using the pyramidal structure employed by Sch6nhage (1980) in his real-time simulation of a

3 multidimensional Turing machin2 by a pointer machine. This structure allows R to determine

which blocks of M' have already been visited by worktape heads. It can be maintained by R

in real-time (that is, 0(1) steps for each block visit).

Grigor'ev's simulation can be converted into an on-line simulation using tile same proce-

dures that Galil (1976) used to convert the simulation of llopcroft et al. (1975) to an on-line

simulation. We do not know the value of n or 1(n) ahead of time, so we use the procedure of

* 71

Subsection 5.2.1, doubling t as necessary. Another problem is that Al' is block-respecting, but

it may need to read input symbols at time steps that are not integer multiples of c(log t)1/d .

Galil solved this problem with a super block-respecting machine, that is, a machine that is

block-respecting and only reads inputs at a time which is a multiple of c(logt) l /d. Galil showed

that M' could be modified so that it was super block-respecting and still run in time O(t).

This modification involved introducing appropriate delays between inputs. The same technique

works in this case. Hence we have R simulate the super block-respecting version of .11, and we

now have an on-line simulation. 0

6.2 Simulation of RAMs by Multidimensional Turing Machines

6.2.1 Simulation of Log-cost RAMs

Loui (1983) provided an upper bound on simulating log-cost RAMs by multidimensional Turing

machines: he showed that every log-cost RAM of time complexity t can be simulated on-line

by a d-dimensional Turing machine in time 0(tl+(l/d)/log t).

We can prove that there is a log-cost RAM R running in time t such that every d-

dimensional Turing machine requires time Q((tl+(i/d)(log log t) l +(l/d))/(log t)+(1/d)) to sim-

ulate R on-line. Suppose, to the contrary, that every log-cost RAM can be simulated on-line

in time o((tl+(1/d)(log log t) l +(I/d))/(log t)2+(1/d)). Combining this simulation with the optimal

on-line simulation of tree machines by log-cost RA-Nfs outlined in Subsection 5.2.1, we obtain

a simulation of tree machines by d-dimensional Turing machines. Applying this simulation

to the real-time tree machine T described in Loui's (1983) proof of a lower bound on on-line

simulation of tree maclines by multidimensional Turing machines, we obtain a d-dimensional

72

Turing machine that simulates T on-line in time o(nl+(I/d) /log n), which contradicts the lower

bound established by Loui.

Here we derive a stronger lower bound for simulating log-cost RAMs by multidimensional

Turing machines. We first introduce Lemma 6.3. This result relies on the fact that there is a

fixed constant c such that for all binary strings a and r,

K() 21ol + c and K(o) < K(ajr) + K(7) + c,

where K() denotes Kolmogorov complexity, defined in Subsection 5.2.2. The constant c is used

in the lemma.

I Lemma 6.3 (Loui, 1983) Let g >_ 1 and let a be an incompressible string of length n > 8(c+g).

3 For every set of g strings {r1 , 72,...,r} each of length at most n/(4g), K(alrl#r 2#... 7.9) >

n/4.

Theorem 6.4 There is a log-cos& RAM R running in time O(n), where n is the input length,

I such that for any d-dimensional Turing machine Al that simulates R on-line, Al requires time

3(nl+(1/d)/(logn(loglogn) l +(1/d))).

Proof. As in Loui (1983), we construct a hard input string consisting of a filling part and a

query part. The filling part comprises an incompressible binary string x of length n/(2 log log n).

I Delimiters are added to x so that R can easily read x in pieces of length (log n)/2. This string

is followed by some "dummy bits" to pad out the filling part so that its total length is n/2. R

processes the filling part in cycles. In each cycle, R reads the next (log n)/2 bits into a cache

I and packs these bits into one register of main memory; so R eventually writes x into the first

3 n/(log n log log n) registers of main memory.

73

R computes the tables necessary for packing after it reads the first piece of x. By maintaining

a counter during the reading of the first piece, R can determine the value of (log n)/2 and use

this value to build the tables.

R takes time O(lognloglogn) to determine the value of (logn)/2. By Lemma 2.4 with

u = (log n)/2, R takes o(n) time to precompute the tables necessary for packing. In each cycle,

R takes O(lognloglogn) time for packing (Lemma 2.3) and O(logn) time for access to one

of the first n/(log n log log n) registers of main memory. Each of n/(log n log log n) cycles takes

time O(log n log log n), so the filling part takes time O(n).

A question for R is a string of the form a$b, where a is a binary string of length log n that

specifies an address in main memory, and b is a binary string of length loglogn that specifies

the position of a particular bit within that register. To process question aSb, R accesses register

r(a) in main memory and outputs the bit at position b in (a), the contents of r(a), without

changing the contents of main memory. After R reads a into the accumulator, R uses an indirect

read to obtain (a) and unpacks (a) into the cache. R then reads b into the accumulator, accesses

the register in the cache corresponding to position b, and outputs that bit. The time to read a

and b into the accumulator and to unpack the contents of r(a) is O(log n log log n), so R takes

time O(log n log log n) on one question.

The query part is a sequence of n/(lognloglogn) questions Q1,Q2,..., so R takes time

O(n) to process the query part. Now we show how to choose questions so that M spends time

Q((n/log log n)1/d) to process each Q1 .

' t .11 have h access heads on one worktape. For j > 1, consider the configuration of

M immediately before reading the first symbol of Qj. Let B1 ,..B.,1h be the boxes of side

length (n/(,Ic'hloglogn))/d centered at the heads in this configuration, where constant C'

7-1

I depends on M and is chosen later. These boxes hold all cells accessed by Al during the next

(n/(4c'hloglogn))l/d/2 steps. Let yi be a binary encoding of the contents of Bi and zi be

a binary encoding of the relative position of access head i in Bi. Let JBIj be the volume

I of Bi, and let lYiI and Izil be the respective lengths of yi and zi. For c' sufficiently large,

jy I -< c'jB j and IzdI _< c'1Bjj for every i. If Af could process every possible question Qj with

the heads remaining in B1 u ... u Bh, then from the string Yl# ... #Yh#Zl# "" #zh, only a

small constant amount of additional information (a binary description of this discussion) would

be necessary to generate x. Thus K(xlyl#... #yh#zl#... #zh) = 0(1), but by Lemma 6.3,

K(xfy#... #yh#Zl#... #zh) > n/(8log log n), and we have a contradiction.

I Therefore, since for each j there exists a Qj such that some head spends time

f(n/(4hloglogn))l/d/2 to exit B 1 U ... U Bh when M processes question Q(, the time

spent by M on the query part is at least (n/(lognloglogn))(n/(4hloglogn))/d/2 =

I 1(nl+(I/d)/(log n(log log n)+(1/d))). 0

6.2.2 Simulation of Unit-cost RAMs

3 Wagner and Wechsung (1986) show that every unit-cost RAM of time complexity t can be

simulated by a d-dimensional Turing machine in time O(t2+(1/d)). We improve their result with

the following theorem.I
Theorem 6.5 Ford > 2, every unit-cost RAM of time complexity t(n) can be simulated on-line

by a d-dimensional Turing machine in time 0(t(n)2 log t(n)).

Proof. We design a d-dimensional Turing machine Af that simulates unit-cost RAM R. Since

we do not know n or t(n) ahead of time, we use the procedure of Subsection 5.2.1, doubling t

as necessary.

I75

Each register accessed by R is represented on the d-dimensional tape by a box of cells called

a record. We refer to the coordinates of the base cell of a record as the coordinates of the

record. Conceptually, records correspond to nodes in a height-balanced binary tree. A depth-

first (preorder) traversal of the tree would produce a list of the records sorted by the addresses

of the registers that the records represent.

Each record x contains a register address, register contents, coordinates of the parent of x (in

binary), coordinates of the left and right children of x (in binary), and balancing information.

On a separate worktape, M keeps the coordinates of the next unused record available for

insertion into the tree.

In t steps, R accesses at most t registers, so Al creates at most t records. Thus M keeps

the contents of all registers used in the computation of R in a large box called the storage area.

The storage area consists of at most t records. Let the volume of the storage area be V.

Since a unit-cost RAM can double the contents of a register at each step, after t steps,

the maximum value in any register (and the maximum register address) is 2t , which can be

represented by t bits. The coordinates of any record can be represented using O(log V) bits,

and the balancing information requires only a constant number of bits. Thus each record is a

box of volume O(t + log V). Since there are at most t records, V = O(t' + t log V). We want to

make the volume of the storage area as small as possible, so choose V = 0(t 2). The side length

of the storage area is Q(t 2 /d).

To move to record x whose coordinates are specified in record y, Mf writes the coordinates

of record x on a separate worktape. M then uses the procedure of Lemma 2.1. so the time to

move a worktape head to record X is O(t2/d).

76

I
Each step of R consists of 0(1) accesses to memory . To simulate an access to register r(a),

M M performs a search through the tree of records. Since the tree is height-balanced, Al visits

O(logt) records. For each record x visited, Al accesses O(t) cells to compare a with the register

address in x. The time to move the head to the next record is O(t2/d). The time to access the

contents portion of a record is O(t). The time to perform an arithmetic operation on operands

of length O(t) is O(t). Since d > 2, the total time taken for each accessed record is O(t). To

keep the tree height-balanced requires adjustments to O(log t) records. Thus the time for each

step of R is O(t log t). The total time for the simulation is O(t 2 log t). 0

Theorem 6.6 There is a unit-cost RAM R running in time n such that for any d-dimensional

multihead Turing machine M, M requires time 0(nl+(l/d)/log n) to simulate R on-line.

I Proof. Let T be the tree machine described in the lower bound proof of Loui (1983). Let

3 R be a unit-cost RAM that simulates T in real time (Theorem 5.1). Since T runs in time n,

R runs in time O(n). Now assume there is a d-dimensional Turing machine that simulates R

I . on-line in time o(nl+(l/d)/log n). We thus have an on-line simulation of a tree machine of time

complexity n by a d-dimensional Turing machine running in time o(nl+(1/d) /log n). But we

know from Loui (1983) that the lower bound on such a simulation is 1(nl+(l/d)/logn); hence

I we have a contradiction. 0

U 6.2.3 Simulation of Unit-cost SRAMs

I Wagner and Wechsung (1986) describe a simulation of a unit-cost SRAI of time complexity t by

a d-dimensional Turing machine in tinie 0(t l +(I/d) log t). We present t lie following improvement:

Theorem 6.7 For d > 2, every unit-cost successor RIM of tine comnplezzty t(n) can be sir-

ulated on-line by a d-dirensional Turing machine in time 0(t(n)1+(l/d)(log t(n))l/d).

I -7

I

Proof. We design a d-dimensional Turing machines M that simulates pointer machine P.

The theorem follows from real-time equivalence of pointer machines and unit-cost SRAMs.

Since we do not know n or t(n) ahead of time, we again employ the technique of repeatedly

doubling t and starting over as necessary. By Lemma 4.13, we can assume that P has a pointer

alphabet of size 2.

As in the simulation of Theorem 6.5, M maintains information about each node of P in a

record, a box of volume O(log t). Let record i represent the ith node created by P. The record

whose base cell is the origin contains the coordinates of the record representing the center node

and the coordinates of the next available record (to represent the next node to be created by P).

For every other record in M, record i contains the coordinates of the records representing the

two nodes pointed to by node i in P. Since P creates at most t nodes, Al maintains information

about all nodes in a large box of volume O(t log t) and side length O((t log t)1/d). Call this large

box the storage area.

Each step of R consists of 0(1) accesses to nodes in the A structure. M moves a worktape

head to a record in the storage area as described in Lemma 2.1, taking time proportional to the

side length of the storage area. Thus each access can be simulated by 11 in time O((tlogt)l/d).

So the entire simulation takes time O(t(tlog t)l/d). 0

Theorem 6.8 There is a unit-cost successor RAM R running in time O(n) such that for

any multihead d-dimensional Turing machine 11 that simulates R on-line, .t requires time

?(nl +(/)/log n).

Proof sketch. It is straightforward to show that every tree machine can be simulated by a

pointer machine, and thus by a unit-cost SRAM, in real time; therefore we can apply the proof

technique of Theorem 6.6. We assume the contrary and present an on-line simulation of a tree

78

I
I machine of time complexity n by a ct-dimensional Turing machine in time o(nl+(l/d)/log n),

I which contradicts the lower bound result of Loui (1983). 0

I
I
I
I
I
U
I
I
I
I
I
I
I
I

I 79

I

Chapter 7

Open Problems

7.1 Improving Pack and Unpack Routines for Log-cost RAMs

We have used the pack and unpack routines of Katajainen et al. (1988) for several results. These

routines take time O(b2b + blog b) time on a RAM. A good question is whether these routines

can be improved; that is, whether a log-cost RAM can compute the b-bit representation of an

integer n < 26, or the numerical value of a b-bit string, in O(blogb) time. Clearly, if the b-bit

representation is to be in b registers, then ft(blog b) time is necessary to access and read each

of b different registers; but is it possible to improve the O(b2b) time needed to create the tables

used in the routines?

We can extend this packing problem as follows: How fast can a log-cost RAM pack b registers

each containing w bits into a single register? Call this the b - w packing problem. It is evident

that Q2(blogb + bw) time is necessary, since the RAM needs f2(blogb) time to write down the

addresses of b distinct registers and Q(bw) time to access b registers each containing w bits. We

can adapt the algorithms of Katajainen et al. (1988) to show that the b - w packing problem

can be solved in time O(bw2w w + blogb + bw); the only major change is to ensure that the

proper values are contained in the first two registers of the origin table. The O(bu.2b,) term is

needed to construct the origin, Ishift, and rshift tables.

If the b - w packing problem could be solved in time O(blogb+ bw), then storing arbitrary

n-bit inputs would take O(nlog'n) time on a log-cost RAM. This upper bound would match

80

I the lower bound on storing n-bit inputs presented by Sch6nhage (1988). Let pack(b,w,x) pack

into AC the contents of the b registers starting at r(x) with each register containing w bits.

The following algorithm, nstore, stores an n-bit input in optimal time, if the b - w packing

I problem is solvable in time O(blogb + bw):

procedure nstore(n, a)
* stores an n-bit number from input into a single register (n + a - 1) in memory

if n = 1 then
read input bit
store bit in register(a - 1)

elseIfor i i=1to n/log n do
nstore(log n, i)

endfor
pack(n/log n,log n,log n)
store contents of accumulator in register (n + a - 1)

endif
end nstore

Let t(n) be the time necessary for a log-cost RAM R to execute nstore on an n-bit number.

For an n-bit number, R takes time (n/log n)t(log n) to make the recursive calls to nstore. If

the b - w packing problem can be solved in time O(blogb + bw), then the call to pack takes

3 time O((n/log n)log n). Access to memory takes time O(log n). Thus analysis of this algorithm

gives us (for some constants k, . . . ,k4):

t(1) = k,

3 t(n) = (n/logn)t(logn)+ k2((n/logn)logn) + k3 logn

= (n/logn)t(logn) + k4 n,

so t(n) = O(n log'n).

Another effect of efficient b - w packing would be a strengthening of the lower bound on the

on-line simulation of a log-cost RAM by a d-dimeisional Turing machine. By Theorem 6.4, we

3 have a lower bound of Q(nl+(I/d)/(logn(log log 7)1 +(1id))). Theorem 6.A used an incompressible

I 81I ,

string of length n/(2 log log n), and the query part comprised only O(n/(log n log log n)) ques-

tions. With efficient b - w packing, we could use an incompressible string of length n/(2 log*n),

and the query part could consist of O(n/(log nlog'n)) questions. The resulting lower bound

would be f2(nl+(11d) /(log n(log*n)l+(I/d))).

7.2 Time versus Space and Determinism versus Alternation

One goal in our research has been to reproduce results for pointer machines already known

for Turing machines. We presented time and space hierarchy theorems and several complexity

results for nondeterministic and alternating pointer machines.

There are still several open questions in this area. As we have mentioned, we would like

to duplicate the time vs. mass result of Halpern et al. (1986) for the capacity space measure

for pointer machines; i.e., we would like to to show that every pointer machine running in time

t can be simulated by a pointer machine running in capacity O(t/logt). Such a result would

be important for at least two reasons. It would provide further evidence that capacity is the

proper measure of space complexity for pointer machines, and it would further establish the

machine-independence of the time vs. space result for Turing machines (Hopcroft et al., 1977).

We believe that this result is possible,but it appears that the approach taken by Halpern et al.

will not provide the desired result.

One approach is to answer another open problem about pointer machines. Dymond and

Tompa (1985) showed that every deterministic Turing machine running in time t can be sim-

ulated by an alternating Turing machine running in time t/log t. We would like to show that

adding the property of alternation to pointer machines yields a similar result; namely, that ev-

ery deterministic pointer machine running in time t can be simulated by an alternating pointer

82

I

I machine running in time O(t/log t). We believe that this is possible, although proving it may

* be difficult.

Suppose PM-TIME(t) 9 APM-TIME(O(t/logt)). Then because APM-TIME(t)

3 C PM-CAPACITY(O(t)) (Theorem 4.17), it would follow that PM-TIME(t) C PM-

3 CAPACITY(O(t/logt)). Thus this alternating vs. deterministic pointer machine time result

would imply the desired pointer machine time vs. capacity result.

I The obvious approach to showing that alternating pointer machines are faster than deter-

3 ministic pointer machines is to adapt the proof of Dymond and Tompa. The difficulty is that

the key to their proof is a pebble game on the computation graph of a Turing machine. A

I similar computation graph for a pointer machine does not seem to have the necessary proper-

3 ties to exploit the same pebble game. It may be that the pointer machine computation graph

must be constructed in a more clever manner, or perhaps some other properties of the more

I straightforward computation graph can be used to prove this result. Another approach is to

avoid explicit construction of the computation graph altogether as in Halpern et al. (1986).

5 7.3 Lower Bound on Simulation of Multidimensional Turing Machines

5 We are attempting to find a tight lower bound for the on-line simulation of multidimensional

Turing machines by log-cost RAMs. We believe that a lower bound of Q(t(logt)1- (1/d))

I is possible. Although this lower bound would not match the current upper bound of

5 O(t(log t)1-(1/d)(log log t)1/d) (Theorem 6.1), it would provide more insight into the possibilities

and limitations of dynamic representation of arrays within a set of registers.

I Our current approach to this problem is to use Kolmogorov complexity, as in Theorem 5.3,

3 where we established a lower bound on simulating a tree machine by a log-cost RAM. We

S83
I

describe a d-dimensional machine M running in real time that we believe cannot be simulated

by any log-cost RAM in time o(t(log t)I-(1/d))..

Again we have a filling part and a query part. For the filling part, M fills a region A of its

worktape with an incompressible string x of length 0(n) such that the distance from the origin

to any cell on the boundary of A is 0(n1/d). A question drives the wort:tape head from the

origin to a boundary cell of A, and back to the origin. The only other movement restriction

on the head during a question is that when the head is moving toward the boundary of A,

it must always move away from the origin. Thus a question takes time 0(n /d) on M. The

query part consists of O(n 1- (l/d)) questions. Our goal is to show that for every RAM R that

simulates M, after i questions, there is always an (i + 1)st question on which R takes time

SI(nl/d(log n)l-(/d)). The argument below leads us to believe that such a question exists.

We construct a question q as follows: RAM R begins processing q by accessing register rl.

We choose the initial portion of q so that R is forced to access some different register r2 as soon

as passible. We then choose the next portion of q so that R must access another register as

soon as possible. We continue in this manner until we have constructed the entire question.

Sa" R accesses, in order, registers ri, r 2 , ... , rm to process q. Let ai be the portion of

the incompressible string x output by R after R accesses ri but before R accesses ri+1 . For

i = 1,...,m, let ti be the length of ai. Note that _=j tI = n id . Since we chose q so that

it forced an access to a new register as soon as possible, ai must be the shortest portion of x

that R could output on this access to ri. Thus the length of the contents of r, at the time it is

accessed (call this length L) is Q(ti) (spe Figure 7.1).

84

U length > Li = volume Q(t4)

Ia,

length > 1i

3 *(origin)

Figure 7.1: Region of worktape that ri could process

3 Let m* be the number of dstinct registers among ri, r2 ,... , r,. The time tq for R to answer

the question q is £(m* log m*) to specify m* distinct register addresses plus Q(T__ (ti)d) . By

I Jensen's inequality, Fj mnl (e)d > m((TmLI (f,))/m)d 1 71(nh//)d.

* We would like to be able to show that among all the questions we could construct in the

above manner, there is at least one question where m = m*; i.e., where all registers accessed

I are distinct. It might be possible to show that if such a question does not exist, then some

3 group of registers specify more than their share of information about x, hence the string x is

compressible. If we could prove the existence of such a question, then we could claim:

tq _ m log m + m(nl/d/m)d = m log m + nm ' d .

I
The right side is minimized when m = (n/log n) I d. Thus t q = Q((nl/d(logn)1-(1/d)). This

* would give us our lower bound.

3 Unfortunately, we have not yet been able to apply an incompressibility argument to prove

the existence of a question where m = m', nor do we know whether such an argument is

3 possible. We may need to focus on some other aspect of the construction of the questions. In

I 85
I

any case, we believe this approach or one similar will yield the desired lower bound, and we

shall continue to investigate the problem.

86

1

I References

i
I

L. M. Adleman and M. C. Loui (1981), Space-bounded simulation of multitape Turing

i machines. Math. Systems Theory, 14:215-222.

A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir (1987), A model for hierarchical

memory. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages 305-314.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman (1974), The Design and Analysis of Computer

I Algorithms. Addison-Wesley Publishing Company.

3 V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev (1970), On econom-

ical construction of the transitive closure of a directed graph. Soviet Math Dokl.,

S11(5):1209-1210.

A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa (1981), A

time-space tradeoff for sorting on non-oblivious machines. J. Comput. System Sci.,

22:351-364.

I A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer (1981), Alternation. J. Assoc. Comput.

3 Mach., 28:114-133.

S. A. Cook and R. A. Reckhow (1973), Time bounded random access machines. J. Comput.

System Sci., 7:354-375.

3 P. W. Dymond (1977), Complexity Relationships among some Models of Computation.

Master's thesis, University of Toronto.

* 87

i

P. W. Dymond and S. A. Cook (1980), Hardware complexity and parallel computation. In

Proc. 21st Ann. Symp on Foundations of Computer Science, pages 360-372.

P. W. Dymond and M. Tompa (1985), Speedups of deterministic machines by synchronous

parallel machines. J. Comput. System Sci., 30:149-161.

M. J. Fischer (1975), Lecture notes (# 20,21) for Course 6.853, Dept. of Electrical Engi-

neering and Computer Science, Massachusetts Institute of Technology.

M. Fiirer (1984), Data structures for distributed counting. J. Comput. System Sci., 28:231

- 243.

Z. Galil (1976), Two fast simulations which imply some fast string matching and

palindrome-recognition algorithms. Information Processing Letters, 4(4):85-87.

D. Y. Grigor'ev (1977), Imbedding theorems for Turing machines of different dimensions

and Kolmogorov algorithms. Soviet Math. Dok!., 18:588-592.

D. Y. Grigor'ev (1979), Time complexity of multidimensional Turing machines. Zapiski

nauenych seminarov, 88:47-55.

J. Y. Halpern, M. C. Loui, A. R. Meyer, and D. Weise (1986), On time versus space III.

Math. Systems Theory, 19:13-28.

J. Hartmanis (1971), Computational complexity of random access stored program ma-

chines. Math. Sys. Theory, 5(3):232-245.

J. Hartmanis and J. E. Hopcroft (1971), An overview of the theory of computational

complexity. J. ACM, 18(3):444-475.

88

I J. Hartmanis, P. M. Lewis II, and R. E. Stearns (1965a), Ihierarchies of memory limited

3 computations. In IEEE Conf. Record on Switching Circuit Theory and Logical Design,

pages 179-190.

J. Hartmanis and R. E. Stearns (1965b), On the computational complexity of algorithms.

3 Trans. Amer. Math. Soc., 117:285-306.

F. C. Hennie (1966), On-line Turing machine computations. IEEE Transactions on Elec-

tronic Computers, EC-15(1):35-44.

I F. C. Hennie and R. E. Stearns (1966), Two-tape simulation of multitape Turing machines.

3 J. Assoc. Comput. Mach., 13(4):533-546.

J. Hopcroft, W. Paul, and L. Valiant (1975), On time versus space and related problems.

In Proc. 16th Ann. Symp. on Foundations of Computer Science, pages 57-64.

J. Hopcroft, W. Paul, and L. Valiant (1977), On time versus space. J. Assoc. Comput.

3 Mach., 24:332-337.

J. E. Hopcroft and J. D. Ullman (1979), Introduction to Automata Theory, Languages,

I and Computation. Addison-Wesley Publishing Company.

3 J. Katajainen, J. V. Leeuwen, and M. Penttonen (1988), Fast simulation of Turing ma-

chines by random access machines. SIAM J. Comput., 17:77-88.

A. N. Kolmogorov (1965), Three approaches to th qiur-titative definition of information.

3 Problems in Information Transmission, 1:1-7.

3 M. Li and P. M. B. Vitanyi (1988), Two decades of applicd Kolmogorov complexity. To

appear in Handbook of Theoretical Computer Science (J. van Leeuwen, Managing Ed-

8
I 8

itor), North-Holland. Preliminary version in Proc. 3rd IEEE Structure in Complexity

Theory Conf., pages 80-101, 1988.

M. C. Loui (1982), Simulations among multidimensional Turing machines. Theoret. Corn-

put. Sci., 21:145-161.

M. C. Loui (1983), Optimal dynamic embedding of trees into arrays. SIAM J. Comput.,

12:463-472.

M. C. Loui (1984a), Minimizing access pointers into trees and arrays. J. Comput. System

Sci., 28(3):359-378.

M. C. Loui (1984b), The complexity of sorting on distributed systems. Inform. and Control,

60:70-85.

D. R. Luginbuhl and M. C. Loui (1988), Hierarchies and Space Measures for Pointer

Machines. Technical Report UILU-ENG-88-2245, University of Illinois at Urbana-

Champaign. Submitted for publication to Information and Computation.

M. C. Loui and D. R. Luginbuhl (1989), Efficient On-Line Simulations of Tree Machines

and Multidimensional Turing Afachines by Random Access Machines. Technical Re-

port UILU-ENG-89-2222, University of IWlinois at Urbana-Champaign. Submitted for

publication to Journal of the ACM.

W. J. Paul (1979), On time hierarchies. J. Comput. System 'C(., 19:197-202.

W. J. Paul, N. Pippenger, E. Szemeredi, and W. Trottet (1983), On determinism versus

non-determinism and related problems. In Proc. 24th Ann. Symp. on Foundations of

Computer Science, pages 429-438.

90

I

I W. J. Paul, E. J. Prau3, and R. Reischuk (1980a), On alternation. Acta Inform., 14:243-

* 255.

W. J. Paul and R. Reischuk (1980b), On alternation Ii. Acta Inform., 14:391-403.

W. Paul and R. Reischuk (1981), On time versus space II. J. Comput. System Sci., 22:312-

* 327.

W. J. Paul, J. I. Seiferas, and J. Simon (1981), An information-theoretic approach to time

bounds for on-line computation. J. Comput. System Sci., 23:108-126.

I N. Pippenger (1982), Probabilistic simulations. In Proc. 14th Ann. ACM Symp. on Theory

3 of Computing, pages 17-26.

N. Pippenger and M. J. Fischer (1979), Relations among complexity measures. J. Assoc.

Comput. Mach., 19:361-381.

I K. R. Reischuk (1982), A fast implementation of a multidimensional storage into a tree

storage. Theoret. Comput. Sci., 19:253-266.

W. Savitch (1970), Relationships between nondeterministic and deterministic tape com- -

plexities. J. Comput. System Sci., 4:177-192.

3 A. Schinhage (1980), Storage modification machines. SIAM J. Comput., 9(3):490-508.

A. Sch6nhage (1988), A nonlinear lower bound for random-access machines under loga-

rithmic cost. J. Assoc. Comput. Mach., 35(3):748-754.

I M. Sipser (1980), Halting space-bounded computations. Theoret. Comput. Sci., 10:335-

1 338.

R. J. Solomonoff (1964), A formal theory of inductive inference, Part 1 and Part 2. Inform.

and Control, 7:1-22,224-254.

1 91
I

C. Slot and P. van Emde Boas (1988), The problem of space invariance for sequential

machines. Inform. and Comput., 77:93-122.

P. van Emde Boas (1989), Space measures for storage modification machines. Information

Processing Letters, 30(2):103-110.

K. Wagner and G. Wechsung (1986), Computational Complexity. D. Reidel Publishing

Company.

J. Wiedermann (1983), Deterministic and nondeterministic simulation of the RAM by the

Turing machine. In Information Processing 83 (IFIP), pages 163-168.

C. K. Yap (1987), An Introduction to the Theory of Complexity Classes, Volume 1. To be

published by Oxford University Press.

92

Vita

David R. Luginbuhl He graduated

in 1976 from Satellite High School in Satellite Beacl, Florida. He attended Florida State

University, where he majored in mathematics with emphasis in computer science. While at

Florida State, he was initiated into Phi Eta Sigma, Phi Beta Kappa, and Phi Kappa Phi. He

graduated summa cum laude in June, 1979. In June, 1980, he was commissioned a Second

Lieutenant in the United States Air Force.

From October, 1980 to October, 1983, Lieutenant Luginbuhl was assigned to the 20th

Missile Warning Squadron and 1020th Computer Services Squadron at Eglin AFB, Florida as a

radar software analyst. He was responsible for software controlling radar operation. and missile

warning functionsof the AN/FPS-85 phased array radar system.

In December of 1981, Lieutenant Luginbuhl received the M.S. degree in mathematics with

emphasis in computer science from Florida State University.

From October, 1983 to August, 1986, Lieutenant Luginbuhl was assigned to Headquarters,

Tactical Air Command at Langley AFB, Virginia. There he developed computer programming

applications and- software to support analysis of Tactical Air Forces issues. While at Langley

AFB, he was promoted to his present rank of Captain. He left that assignment for his current

assignment: to pursue a Ph.D. in Computer Science at the University of Illinois.

Upon graduation, Captain Luginbuhl will be an instructor at the Air Force Institute of

Technology at Wright-Patterson AFB, Ohio.

93

Captain Luginbuhl is an Air Force ROTC Distinguished Graduate. lie has received two Air

Force Commendation Medals and the Air Force Organizational Excellence Award.

Captain Luginbuhl is an active member of the Urbana Free Methodist Church. His extracur-

ricular activities include participation in Graduate InterVarsity Christian Fellowship, running,

and playing volleyball. He also enjoys terrorizing his dog, Ascii.

I

i
I
I
I
I
I
I

U

I

